涡旋式压缩机
聚光镜(光学)
气体压缩机
人工神经网络
空调
制冷剂
制冷
热膨胀阀
冷却能力
工程类
计算机科学
汽车工程
均方误差
传递函数
质量流量
航程(航空)
控制理论(社会学)
电动汽车
机械工程
功率(物理)
电气工程
人工智能
数学
机械
航空航天工程
热力学
物理
统计
光源
控制(管理)
光学
作者
Zhen Tian,Ch. Qian,Bin Gu,Lin Yang,F. Liu
标识
DOI:10.1016/j.applthermaleng.2015.06.002
摘要
In this study, electric vehicle air conditioning system (EVACS) performances with scroll compressor and electronic expansion valve (EEV) were experimentally investigated by varying scroll compressor speed, EEV opening and environment temperature. An artificial neural network (ANN) model for EVACS performances (such as refrigerant mass flow rate, condenser heat rejection, refrigeration capacity and compressor power consumption) prediction was developed based on experimental data. The ANN model was tested with two transfer functions (logsig and tansig) and different hidden neurons (3–13) using Levernberg-Marquardt algorithm. The optimized ANN was determined as a configuration of 4-13-4 with logsig transfer function, which demonstrated the best capability with mean relative errors, root mean square errors and correlation coefficients in the range of 0.92–2.71%, 0.0044–0.0141 and 0.9975–0.9998, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI