A Compound Events Model for Security Prices

业务 计算机科学
作者
S. James Press
出处
期刊:The Journal of Business [The University of Chicago Press]
卷期号:40 (3): 317-317 被引量:394
标识
DOI:10.1086/294980
摘要

SUMMARY A model for the distribution of security price changes is proposed. The model is similiar to previous analyses of stock market price behavior in that logged price changes are assumed to be independent (random walk models). However, this model differs from earlier work in that the logged price changes are not assumed to follow some stable distribution (which might possibly be normal). Instead, the logged price changes are assumed to follow a distribution that is a Poisson mixture of normal distributions. It is shown that the analytical characteristics of such a distribution agree with what has been found empirically. That is, this distribution is in general skewed, leptokurtic, more peaked at its mean than the distribution of a comparable normal variate, and has greater probability mass in its tails than the distribution of a comparable normal variate. A cumulant matching method is suggested for estimating the four parameters of the distribution. The model is also generalized to the multivariate case in which a group of securities may be studied simultaneously. Parameters are in a manner analogous to that of the univariate case. A brief frequency discussion of the spectrum for the univariate case is also provided. Finally, a univariate empirical study of ten of the Dow Jones Industrial stocks is presented. All parameters are estimated, and graphs are provided to show how actual prices varied from 1926-1960. These graphs are compared with the model trend (linear), with a one standard deviation confidence region. For each stock, two graphs of the cumulative distribution function (c.d.f.) of the price differences are presented. One, the empirical c.d.f. is computed directly from the sample observations. The other, the estimated theoretical c.d.f., is computed by substituting the parameter estimates for the true parameters in the proposed model. Agreement between the two curves is often quite close. The numerical results must be interpreted bearing in mind that the sample sizes may be much too small to provide efficient estimators, and the time periods studied may be much too long to yield small confidence bounds on the price variations that should be expected at reasonable significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
ycxie1003完成签到,获得积分10
2秒前
浅笑心柔发布了新的文献求助10
3秒前
张腾飞发布了新的文献求助10
4秒前
5秒前
李爱国应助村里的山水采纳,获得10
5秒前
热心的早晨完成签到,获得积分10
5秒前
yjs666完成签到,获得积分10
6秒前
小红完成签到,获得积分10
8秒前
王的江发布了新的文献求助10
8秒前
852应助无语的夜春采纳,获得10
9秒前
10秒前
无奈敏发布了新的文献求助10
10秒前
善良小鸽子完成签到,获得积分10
10秒前
123123完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
gong发布了新的文献求助20
16秒前
英俊的铭应助研友_ZeoKYL采纳,获得10
16秒前
烦烦烦发布了新的文献求助100
16秒前
ddk发布了新的文献求助10
17秒前
景时完成签到,获得积分10
17秒前
Dong灬发布了新的文献求助10
17秒前
科研乞丐应助哈利波特大采纳,获得20
17秒前
瘦瘦的惮发布了新的文献求助10
18秒前
18秒前
19秒前
传奇3应助曾经的康乃馨采纳,获得10
19秒前
huan发布了新的文献求助30
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424904
求助须知:如何正确求助?哪些是违规求助? 4539183
关于积分的说明 14165914
捐赠科研通 4456291
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435170
关于科研通互助平台的介绍 1412492