A Compound Events Model for Security Prices

业务 计算机科学
作者
S. James Press
出处
期刊:The Journal of Business [The University of Chicago Press]
卷期号:40 (3): 317-317 被引量:394
标识
DOI:10.1086/294980
摘要

SUMMARY A model for the distribution of security price changes is proposed. The model is similiar to previous analyses of stock market price behavior in that logged price changes are assumed to be independent (random walk models). However, this model differs from earlier work in that the logged price changes are not assumed to follow some stable distribution (which might possibly be normal). Instead, the logged price changes are assumed to follow a distribution that is a Poisson mixture of normal distributions. It is shown that the analytical characteristics of such a distribution agree with what has been found empirically. That is, this distribution is in general skewed, leptokurtic, more peaked at its mean than the distribution of a comparable normal variate, and has greater probability mass in its tails than the distribution of a comparable normal variate. A cumulant matching method is suggested for estimating the four parameters of the distribution. The model is also generalized to the multivariate case in which a group of securities may be studied simultaneously. Parameters are in a manner analogous to that of the univariate case. A brief frequency discussion of the spectrum for the univariate case is also provided. Finally, a univariate empirical study of ten of the Dow Jones Industrial stocks is presented. All parameters are estimated, and graphs are provided to show how actual prices varied from 1926-1960. These graphs are compared with the model trend (linear), with a one standard deviation confidence region. For each stock, two graphs of the cumulative distribution function (c.d.f.) of the price differences are presented. One, the empirical c.d.f. is computed directly from the sample observations. The other, the estimated theoretical c.d.f., is computed by substituting the parameter estimates for the true parameters in the proposed model. Agreement between the two curves is often quite close. The numerical results must be interpreted bearing in mind that the sample sizes may be much too small to provide efficient estimators, and the time periods studied may be much too long to yield small confidence bounds on the price variations that should be expected at reasonable significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryuki完成签到 ,获得积分10
2秒前
2秒前
3秒前
xionggege完成签到,获得积分10
3秒前
十一完成签到,获得积分10
4秒前
7秒前
玻璃杯完成签到 ,获得积分10
8秒前
风趣的老太应助houbinghua采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
roclie完成签到,获得积分10
11秒前
12秒前
vivelejrlee完成签到,获得积分10
12秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
学分完成签到 ,获得积分10
21秒前
共享精神应助MM采纳,获得10
21秒前
dldldl完成签到,获得积分10
21秒前
23秒前
8D完成签到,获得积分10
24秒前
HuFan1201完成签到 ,获得积分10
24秒前
mingjiang发布了新的文献求助10
27秒前
冷萃咖啡完成签到,获得积分10
28秒前
29秒前
丹丹完成签到 ,获得积分10
30秒前
笑点低的泥猴桃完成签到,获得积分10
31秒前
31秒前
量子星尘发布了新的文献求助10
36秒前
i2stay完成签到,获得积分10
36秒前
阿连发布了新的文献求助10
37秒前
淡然的咖啡豆完成签到 ,获得积分10
38秒前
温馨完成签到 ,获得积分10
38秒前
像猫的狗完成签到 ,获得积分10
38秒前
39秒前
上官若男应助Robbin采纳,获得10
39秒前
lijunlhc完成签到,获得积分10
41秒前
丰富咖啡完成签到,获得积分10
43秒前
44秒前
量子星尘发布了新的文献求助10
45秒前
量子星尘发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613184
求助须知:如何正确求助?哪些是违规求助? 4018096
关于积分的说明 12437068
捐赠科研通 3700451
什么是DOI,文献DOI怎么找? 2040764
邀请新用户注册赠送积分活动 1073552
科研通“疑难数据库(出版商)”最低求助积分说明 957210