A Compound Events Model for Security Prices

业务 计算机科学
作者
S. James Press
出处
期刊:The Journal of Business [The University of Chicago Press]
卷期号:40 (3): 317-317 被引量:394
标识
DOI:10.1086/294980
摘要

SUMMARY A model for the distribution of security price changes is proposed. The model is similiar to previous analyses of stock market price behavior in that logged price changes are assumed to be independent (random walk models). However, this model differs from earlier work in that the logged price changes are not assumed to follow some stable distribution (which might possibly be normal). Instead, the logged price changes are assumed to follow a distribution that is a Poisson mixture of normal distributions. It is shown that the analytical characteristics of such a distribution agree with what has been found empirically. That is, this distribution is in general skewed, leptokurtic, more peaked at its mean than the distribution of a comparable normal variate, and has greater probability mass in its tails than the distribution of a comparable normal variate. A cumulant matching method is suggested for estimating the four parameters of the distribution. The model is also generalized to the multivariate case in which a group of securities may be studied simultaneously. Parameters are in a manner analogous to that of the univariate case. A brief frequency discussion of the spectrum for the univariate case is also provided. Finally, a univariate empirical study of ten of the Dow Jones Industrial stocks is presented. All parameters are estimated, and graphs are provided to show how actual prices varied from 1926-1960. These graphs are compared with the model trend (linear), with a one standard deviation confidence region. For each stock, two graphs of the cumulative distribution function (c.d.f.) of the price differences are presented. One, the empirical c.d.f. is computed directly from the sample observations. The other, the estimated theoretical c.d.f., is computed by substituting the parameter estimates for the true parameters in the proposed model. Agreement between the two curves is often quite close. The numerical results must be interpreted bearing in mind that the sample sizes may be much too small to provide efficient estimators, and the time periods studied may be much too long to yield small confidence bounds on the price variations that should be expected at reasonable significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
金秋完成签到,获得积分0
7秒前
2568269431完成签到 ,获得积分10
10秒前
sswy完成签到 ,获得积分10
12秒前
安静严青完成签到 ,获得积分10
12秒前
迅速的念芹完成签到 ,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
23秒前
qiancib202完成签到,获得积分10
24秒前
花花糖果完成签到 ,获得积分10
27秒前
科研通AI5应助小李采纳,获得10
29秒前
31秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
31秒前
Henry完成签到,获得积分10
33秒前
小木没有烦恼完成签到 ,获得积分10
34秒前
王海海完成签到 ,获得积分10
35秒前
Nobody完成签到,获得积分10
35秒前
CHSLN完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助30
36秒前
LJ_2完成签到 ,获得积分10
37秒前
勤恳的书文完成签到 ,获得积分10
42秒前
瘦瘦的迎南完成签到 ,获得积分10
45秒前
黄汉良完成签到,获得积分10
45秒前
廿三完成签到,获得积分10
48秒前
49秒前
Alvin完成签到 ,获得积分10
49秒前
邱佩群完成签到 ,获得积分10
50秒前
紫熊发布了新的文献求助10
52秒前
量子星尘发布了新的文献求助10
52秒前
Akim应助幸福的靳采纳,获得10
1分钟前
淞淞于我完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xcuwlj完成签到 ,获得积分10
1分钟前
火星上的雨柏完成签到 ,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
john完成签到 ,获得积分10
1分钟前
杨鑫萍完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
七八九完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044251
求助须知:如何正确求助?哪些是违规求助? 4274024
关于积分的说明 13323099
捐赠科研通 4087533
什么是DOI,文献DOI怎么找? 2236362
邀请新用户注册赠送积分活动 1243756
关于科研通互助平台的介绍 1171704