A Compound Events Model for Security Prices

业务 计算机科学
作者
S. James Press
出处
期刊:The Journal of Business [The University of Chicago Press]
卷期号:40 (3): 317-317 被引量:394
标识
DOI:10.1086/294980
摘要

SUMMARY A model for the distribution of security price changes is proposed. The model is similiar to previous analyses of stock market price behavior in that logged price changes are assumed to be independent (random walk models). However, this model differs from earlier work in that the logged price changes are not assumed to follow some stable distribution (which might possibly be normal). Instead, the logged price changes are assumed to follow a distribution that is a Poisson mixture of normal distributions. It is shown that the analytical characteristics of such a distribution agree with what has been found empirically. That is, this distribution is in general skewed, leptokurtic, more peaked at its mean than the distribution of a comparable normal variate, and has greater probability mass in its tails than the distribution of a comparable normal variate. A cumulant matching method is suggested for estimating the four parameters of the distribution. The model is also generalized to the multivariate case in which a group of securities may be studied simultaneously. Parameters are in a manner analogous to that of the univariate case. A brief frequency discussion of the spectrum for the univariate case is also provided. Finally, a univariate empirical study of ten of the Dow Jones Industrial stocks is presented. All parameters are estimated, and graphs are provided to show how actual prices varied from 1926-1960. These graphs are compared with the model trend (linear), with a one standard deviation confidence region. For each stock, two graphs of the cumulative distribution function (c.d.f.) of the price differences are presented. One, the empirical c.d.f. is computed directly from the sample observations. The other, the estimated theoretical c.d.f., is computed by substituting the parameter estimates for the true parameters in the proposed model. Agreement between the two curves is often quite close. The numerical results must be interpreted bearing in mind that the sample sizes may be much too small to provide efficient estimators, and the time periods studied may be much too long to yield small confidence bounds on the price variations that should be expected at reasonable significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jinnnnn完成签到,获得积分10
刚刚
xxfsx应助lslslslsllss采纳,获得20
1秒前
嘿嘿应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
嘿嘿应助科研通管家采纳,获得30
1秒前
嘿嘿应助科研通管家采纳,获得10
1秒前
嘿嘿应助科研通管家采纳,获得10
1秒前
嘿嘿应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
大聪明应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
嘿嘿应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
风吹麦田应助科研通管家采纳,获得80
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
yae应助科研通管家采纳,获得20
2秒前
shanshan发布了新的文献求助10
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
霸气南珍应助科研通管家采纳,获得50
3秒前
3秒前
3秒前
将爱却晚秋完成签到,获得积分10
6秒前
7秒前
狂野傲珊完成签到 ,获得积分10
7秒前
7秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380088
求助须知:如何正确求助?哪些是违规求助? 4504158
关于积分的说明 14017420
捐赠科研通 4413027
什么是DOI,文献DOI怎么找? 2424054
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394628