A Compound Events Model for Security Prices

业务 计算机科学
作者
S. James Press
出处
期刊:The Journal of Business [The University of Chicago Press]
卷期号:40 (3): 317-317 被引量:394
标识
DOI:10.1086/294980
摘要

SUMMARY A model for the distribution of security price changes is proposed. The model is similiar to previous analyses of stock market price behavior in that logged price changes are assumed to be independent (random walk models). However, this model differs from earlier work in that the logged price changes are not assumed to follow some stable distribution (which might possibly be normal). Instead, the logged price changes are assumed to follow a distribution that is a Poisson mixture of normal distributions. It is shown that the analytical characteristics of such a distribution agree with what has been found empirically. That is, this distribution is in general skewed, leptokurtic, more peaked at its mean than the distribution of a comparable normal variate, and has greater probability mass in its tails than the distribution of a comparable normal variate. A cumulant matching method is suggested for estimating the four parameters of the distribution. The model is also generalized to the multivariate case in which a group of securities may be studied simultaneously. Parameters are in a manner analogous to that of the univariate case. A brief frequency discussion of the spectrum for the univariate case is also provided. Finally, a univariate empirical study of ten of the Dow Jones Industrial stocks is presented. All parameters are estimated, and graphs are provided to show how actual prices varied from 1926-1960. These graphs are compared with the model trend (linear), with a one standard deviation confidence region. For each stock, two graphs of the cumulative distribution function (c.d.f.) of the price differences are presented. One, the empirical c.d.f. is computed directly from the sample observations. The other, the estimated theoretical c.d.f., is computed by substituting the parameter estimates for the true parameters in the proposed model. Agreement between the two curves is often quite close. The numerical results must be interpreted bearing in mind that the sample sizes may be much too small to provide efficient estimators, and the time periods studied may be much too long to yield small confidence bounds on the price variations that should be expected at reasonable significance levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanxiqianxia完成签到,获得积分10
刚刚
高高的山兰完成签到 ,获得积分10
刚刚
积极的白亦完成签到,获得积分10
4秒前
旺阿旺完成签到,获得积分10
6秒前
聪明的哈密瓜完成签到,获得积分10
6秒前
struggle完成签到 ,获得积分10
7秒前
冷静的访天完成签到 ,获得积分10
8秒前
秋qiu完成签到 ,获得积分20
9秒前
小马甲应助害羞的天真采纳,获得10
10秒前
小王同学完成签到,获得积分10
12秒前
浮游应助科研小白一枚采纳,获得10
14秒前
五十完成签到 ,获得积分10
14秒前
十个勤天完成签到,获得积分10
15秒前
18秒前
Yingkun_Xu完成签到,获得积分10
18秒前
沧海云完成签到 ,获得积分0
19秒前
恒星完成签到,获得积分10
19秒前
853225598完成签到,获得积分10
19秒前
macarthur发布了新的文献求助10
21秒前
浮光完成签到 ,获得积分10
22秒前
大力蓝完成签到,获得积分10
23秒前
净净子完成签到 ,获得积分10
23秒前
25秒前
乐观银耳汤完成签到,获得积分10
25秒前
奋斗朋友完成签到 ,获得积分10
25秒前
苏梗完成签到 ,获得积分10
27秒前
28秒前
lay完成签到,获得积分10
30秒前
小刘完成签到,获得积分10
32秒前
更好的我完成签到,获得积分10
33秒前
33秒前
杨美琪完成签到,获得积分10
36秒前
HTniconico完成签到 ,获得积分10
38秒前
大糖糕僧完成签到,获得积分10
38秒前
nkr完成签到,获得积分10
39秒前
大方百招完成签到,获得积分10
43秒前
善善完成签到 ,获得积分10
49秒前
十一完成签到 ,获得积分10
49秒前
50秒前
Ttimer驳回了zsyhcl应助
52秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212620
求助须知:如何正确求助?哪些是违规求助? 4388725
关于积分的说明 13664435
捐赠科研通 4249316
什么是DOI,文献DOI怎么找? 2331521
邀请新用户注册赠送积分活动 1329244
关于科研通互助平台的介绍 1282658