外延
纳米结构
材料科学
纳米技术
表征(材料科学)
图层(电子)
作者
Chaoliang Tan,Junze Chen,Xue‐Jun Wu,Hua Zhang
标识
DOI:10.1038/natrevmats.2017.89
摘要
Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures. Epitaxial hybrid nanostructures can show different functionalities and superior performance in applications from those of the individual components. This Review discusses the methods of preparation and techniques for characterization of epitaxial hybrid nanostructures with various architectures, and examines the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI