Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label

中性粒细胞 医学 呼出气一氧化氮 慢性阻塞性肺病 哮喘 内科学 嗜酸性 嗜酸性粒细胞增多症 呼气 肺活量测定 病理 麻醉
作者
Rianne de Vries,Yennece W.F. Dagelet,Pien Spoor,Erik Snoey,Patrick Jak,Paul Brinkman,Erica Dijkers,S. Bootsma,Fred Elskamp,Frans H. de Jongh,Eric G. Haarman,J.C.C.M. in ’t Veen,Anke H. Maitland‐van der Zee,Peter J. Sterk
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:51 (1): 1701817-1701817 被引量:122
标识
DOI:10.1183/13993003.01817-2017
摘要

Asthma and chronic obstructive pulmonary disease (COPD) are complex and overlapping diseases that include inflammatory phenotypes. Novel anti-eosinophilic/anti-neutrophilic strategies demand rapid inflammatory phenotyping, which might be accessible from exhaled breath. Our objective was to capture clinical/inflammatory phenotypes in patients with chronic airway disease using an electronic nose (eNose) in a training and validation set. This was a multicentre cross-sectional study in which exhaled breath from asthma and COPD patients (n=435; training n=321 and validation n=114) was analysed using eNose technology. Data analysis involved signal processing and statistics based on principal component analysis followed by unsupervised cluster analysis and supervised linear regression. Clustering based on eNose resulted in five significant combined asthma and COPD clusters that differed regarding ethnicity (p=0.01), systemic eosinophilia (p=0.02) and neutrophilia (p=0.03), body mass index (p=0.04), exhaled nitric oxide fraction (p<0.01), atopy (p<0.01) and exacerbation rate (p<0.01). Significant regression models were found for the prediction of eosinophilic (R 2 =0.581) and neutrophilic (R 2 =0.409) blood counts based on eNose. Similar clusters and regression results were obtained in the validation set. Phenotyping a combined sample of asthma and COPD patients using eNose provides validated clusters that are not determined by diagnosis, but rather by clinical/inflammatory characteristics. eNose identified systemic neutrophilia and/or eosinophilia in a dose-dependent manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孟春纪事完成签到,获得积分10
1秒前
清爽忆山完成签到,获得积分10
1秒前
小马甲应助轻松的怜容采纳,获得10
1秒前
Grayball应助噢噢采纳,获得10
1秒前
言辞完成签到,获得积分10
1秒前
小柠檬完成签到,获得积分20
1秒前
1秒前
土豆丝完成签到 ,获得积分10
2秒前
念念完成签到,获得积分10
2秒前
乐乐应助starry采纳,获得10
2秒前
温暖冰珍完成签到 ,获得积分10
2秒前
淳之风完成签到,获得积分20
3秒前
CarterXD应助hao采纳,获得30
3秒前
科研rain完成签到 ,获得积分10
3秒前
3秒前
清爽忆山发布了新的文献求助10
4秒前
睡觉晒太阳完成签到,获得积分10
4秒前
andy完成签到,获得积分10
4秒前
4秒前
Itachi12138完成签到,获得积分10
4秒前
CipherSage应助蓝莓松饼采纳,获得10
4秒前
4秒前
团团完成签到,获得积分10
4秒前
追寻的易烟完成签到,获得积分10
4秒前
snow完成签到,获得积分10
5秒前
5秒前
5秒前
1111完成签到,获得积分20
6秒前
爆米花应助笑点低蜜蜂采纳,获得10
6秒前
橘子味汽水完成签到 ,获得积分10
6秒前
Victor陈完成签到,获得积分10
6秒前
6秒前
seed85完成签到,获得积分10
6秒前
最初完成签到,获得积分20
7秒前
Hello应助Chem is try采纳,获得10
7秒前
hhh发布了新的文献求助10
7秒前
7秒前
8秒前
落寞白曼完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672