Towards predicting the environmental metabolome from metagenomics with a mechanistic model

代谢组 基因组 计算生物学 生物 代谢组学 基因 遗传学 生物信息学
作者
Daniel Garza,Marcel C. Van Verk,Martijn A. Huynen,Bas E. Dutilh
出处
期刊:Nature microbiology [Nature Portfolio]
卷期号:3 (4): 456-460 被引量:92
标识
DOI:10.1038/s41564-018-0124-8
摘要

The environmental metabolome and metabolic potential of microorganisms are dominant and essential factors shaping microbial community composition. Recent advances in genome annotation and systems biology now allow us to semiautomatically reconstruct genome-scale metabolic models (GSMMs) of microorganisms based on their genome sequence 1 . Next, growth of these models in a defined metabolic environment can be predicted in silico, mechanistically linking the metabolic fluxes of individual microbial populations to the community dynamics. A major advantage of GSMMs is that no training data is needed, besides information about the metabolic capacity of individual genes (genome annotation) and knowledge of the available environmental metabolites that allow the microorganism to grow. However, the composition of the environment is often not fully determined and remains difficult to measure 2 . We hypothesized that the relative abundance of different bacterial species, as measured by metagenomics, can be combined with GSMMs of individual bacteria to reveal the metabolic status of a given biome. Using a newly developed algorithm involving over 1,500 GSMMs of human-associated bacteria, we inferred distinct metabolomes for four human body sites that are consistent with experimental data. Together, we link the metagenome to the metabolome in a mechanistic framework towards predictive microbiome modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助qiuyu采纳,获得10
2秒前
一枚小神经病关注了科研通微信公众号
3秒前
小王姐姐应助Wang采纳,获得10
3秒前
科研通AI2S应助樱桃小王子采纳,获得10
3秒前
4秒前
4秒前
4秒前
李健应助cllcx采纳,获得10
5秒前
知性的土豆完成签到,获得积分10
6秒前
完美世界应助罗氏集团采纳,获得10
6秒前
7秒前
8秒前
工商第一发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
IUIU发布了新的文献求助20
12秒前
追寻柚子发布了新的文献求助10
13秒前
Sherry发布了新的文献求助10
13秒前
浅忆完成签到 ,获得积分10
13秒前
飓风发布了新的文献求助30
14秒前
脑洞疼应助壮观的擎采纳,获得10
14秒前
hua应助Stroeve采纳,获得10
15秒前
16秒前
17秒前
hkh发布了新的文献求助10
17秒前
谁都别想PUA我完成签到,获得积分10
18秒前
18秒前
18秒前
慕青应助31313采纳,获得10
19秒前
19秒前
研友_VZG7GZ应助yuaasusanaann采纳,获得10
20秒前
Sherry完成签到,获得积分10
20秒前
21秒前
天天快乐应助雨中石采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014