A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal

计算机科学 人工智能 模式识别(心理学) 隐马尔可夫模型 人工神经网络 多导睡眠图 深度学习 特征(语言学) 支持向量机 睡眠呼吸暂停 特征提取 机器学习 语音识别 呼吸暂停 医学 心脏病学 哲学 精神科 语言学
作者
Kunyang Li,Weifeng Pan,Yifan Li,Qing Jiang,Guanzheng Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:294: 94-101 被引量:202
标识
DOI:10.1016/j.neucom.2018.03.011
摘要

Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder that potentially threatened people's cardiovascular system. As an alternative to polysomnography for OSA detection, ECG-based methods have been developed for several years. However, previous work is focused on feature engineering, which is highly dependent on the prior knowledge of human experts and maybe subjective. Moreover, feature engineering also highlights the prominent shortcoming of current learning algorithms that the features are unable to extracted and organized from the data. In this study, we proposed a method to detect OSA based on deep neural network and Hidden Markov model (HMM) using single-lead ECG signal. The method utilized sparse auto-encoder to learn features, which belongs to unsupervised learning that only requires unlabeled ECG signals. Two types classifiers (SVM and ANN) are used to classify the features extracted from the sparse auto-encoder. Considering the temporal dependency, HMM was adopted to improve the classification accuracy. Finally, a decision fusion method is adopted to improve the classification performance. About 85% classification accuracy is achieved in the per-segment OSA detection, and the sensitivity is up to 88.9%. Based on the results of per-segment OSA detection, we perfectly separate the OSA recording from normal with accuracy of 100%. Experimental results demonstrated that our proposed method is reliable for OSA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lisa完成签到,获得积分10
1秒前
1秒前
妮妮爱smile完成签到 ,获得积分10
1秒前
汕头凯奇完成签到,获得积分10
2秒前
hjkk完成签到,获得积分10
2秒前
大胆的若南关注了科研通微信公众号
2秒前
大胆的若南关注了科研通微信公众号
2秒前
2秒前
深情安青应助尔蝶采纳,获得10
2秒前
dushicheng发布了新的文献求助10
3秒前
3秒前
挖药狂魔完成签到,获得积分10
3秒前
bkagyin应助松果采纳,获得10
3秒前
Yeah完成签到,获得积分10
4秒前
4秒前
James完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
wsq完成签到,获得积分10
4秒前
喂喂喂威给喂喂喂威的求助进行了留言
5秒前
cheng发布了新的文献求助10
5秒前
浩浩浩完成签到,获得积分10
5秒前
早爹完成签到 ,获得积分10
5秒前
Owen应助christinaMarsh采纳,获得30
5秒前
秦磊完成签到,获得积分10
6秒前
a2271559577发布了新的文献求助30
7秒前
7秒前
AAA完成签到,获得积分10
7秒前
乐乐应助Liangc333采纳,获得10
8秒前
火星上的冬云完成签到,获得积分20
8秒前
8秒前
Porifera完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
美丽星期五完成签到,获得积分10
8秒前
8秒前
团团完成签到,获得积分10
8秒前
啾一口香菜完成签到 ,获得积分10
9秒前
乐乐应助糟糕的洋葱采纳,获得10
9秒前
影子完成签到,获得积分20
9秒前
龙傲天完成签到,获得积分10
9秒前
chaosyw完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666840
求助须知:如何正确求助?哪些是违规求助? 3225706
关于积分的说明 9764854
捐赠科研通 2935572
什么是DOI,文献DOI怎么找? 1607763
邀请新用户注册赠送积分活动 759353
科研通“疑难数据库(出版商)”最低求助积分说明 735287