All‐Glass 3D Optofluidic Microchip with Built‐in Tunable Microlens Fabricated by Femtosecond Laser‐Assisted Etching

微透镜 材料科学 微流控 飞秒 光电子学 电润湿 折射率 激光器 流体学 纳米技术 光学 镜头(地质) 物理 工程类 电介质 航空航天工程
作者
Yanlei Hu,Shenglong Rao,Sizhu Wu,Pengfei Wei,Weixin Qiu,Dong Wu,Bing Xu,Jincheng Ni,Liang Yang,Jiawen Li,Jiaru Chu,Koji Sugioka
出处
期刊:Advanced Optical Materials [Wiley]
卷期号:6 (9) 被引量:71
标识
DOI:10.1002/adom.201701299
摘要

Abstract Development of tunable microlenses by taking advantage of the physical adaptability of fluids is one of the challenges of optofluidic techniques, since it offers many applications in biochips, consumer electronics, and medical engineering. Current optofluidic tuning methods using electrowetting or pneumatic pressure typically suffer from high complexity involving external electromechanical actuating devices and limited tuning performance. In this paper, a novel and simple tuning method is proposed that changes the liquid refractive index in an optofluidic channel while leaving the shape of the microlens unchanged. To create an optofluidic microlens with high robustness and optical performance, built‐in microlenses are fabricated inside 3D glass microfluidic channels by optimized single‐operation wet etching assisted by a femtosecond laser. Tuning of focusing properties is demonstrated by filling the channel with media having different indices. Continuous tuning over a wide range (more than threefold tunability for both focal length and focal spot size) is also achieved by pumping sucrose solutions with different concentrations into the microchip channels. Reversible tuning is experimentally verified, indicating intriguing properties of the all‐glass optofluidic microchip. Both the proposed tuning method and the all‐glass architecture with built‐in microlens offer great potential toward numerous applications, including microfluidic adaptive imaging and biomedical sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
星辰大海应助XUZELIN采纳,获得10
2秒前
3秒前
Rui完成签到,获得积分10
4秒前
璐璇完成签到,获得积分10
5秒前
6秒前
6秒前
毛豆应助Hosea采纳,获得10
6秒前
wby0313发布了新的文献求助10
7秒前
标致的诗蕊完成签到 ,获得积分10
7秒前
8秒前
8秒前
汪治臣发布了新的文献求助10
9秒前
10秒前
10秒前
SciGPT应助孙彩瑛采纳,获得10
10秒前
田様应助合适的龙猫采纳,获得10
11秒前
11秒前
Zoe完成签到,获得积分10
14秒前
15秒前
秋沧海完成签到,获得积分10
15秒前
XY发布了新的文献求助10
15秒前
16秒前
长明灯完成签到,获得积分10
16秒前
华仔应助斯文明杰采纳,获得10
16秒前
毛豆应助令尘采纳,获得10
17秒前
心晴发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
Fubao发布了新的文献求助10
19秒前
20秒前
情怀应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
21秒前
打打应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455268
求助须知:如何正确求助?哪些是违规求助? 3050635
关于积分的说明 9021890
捐赠科研通 2739221
什么是DOI,文献DOI怎么找? 1502502
科研通“疑难数据库(出版商)”最低求助积分说明 694549
邀请新用户注册赠送积分活动 693350