猪繁殖与呼吸综合征病毒
重组DNA
生物
病毒学
拉伤
基因组
病毒
重组病毒
致病性
基因
遗传学
微生物学
解剖
作者
H.-M. Wang,Y.-G. Liu,Yan-Dong Tang,T.-X. Liu,Linlin Zheng,T.-Y. Wang,S.-G. Liu,G. Wang,Xuehui Cai
摘要
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economically significant pathogen that has adversely affected China's swine industry. Currently, a novel type 2 PRRSV, called the NADC30-like strain, is epidemic in numerous provinces of China, and commercial vaccines provide limited protection for infected animals. The extensive recombination phenomenon among NADC30-like PRRSVs is identified as a unique molecular characteristic of the virus. However, our understanding of how recombination influences NADC30-like PRRSVs is largely inadequate. In this study, we analysed the genetic characteristics of a recombinant NADC30-like PRRSV (SC-d) and examined its pathogenicity compared with a non-recombinant NADC30-like PRRSV (SD-A19) and a highly pathogenic PRRSV (HuN4). SC-d has three discontinuous deletions in nsp2, consistent with NADC30 isolated from the United States in 2008. Furthermore, we identified four recombination breakpoints in the SC-d genome, which separated the SC-d genome into four regions (regions A, B, C and D). Regions A and C are closely related to the JXA1-like strain, one of the earliest Chinese HP-PRRSV strains, and regions B and D are closely related to the NADC30 strain. Moreover, SC-d inoculated piglets exhibited a persistent fever, moderate weight loss, mild thymus atrophy and obvious microscopic lung lesions. In summary, the recombinant NADC30-like PRRSV SC-d strain displayed a higher pathogenicity than the non-recombinant NADC30-like PRRSV SD-A19 strain; however, the pathogenicity of the NADC30-like PRRSV SC-d was lower compared with the HP-PRRSV HuN4 strain in piglets. Our findings demonstrate that recombination is responsible for the enormous genetic diversity and pathogenicity variance of the NADC30-like PRRSV in China. This study provides a theoretical basis for developing a more reasonable PRRSV control and prevention strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI