化学
色谱法
免疫分析
分析物
检出限
胶体金
荧光
线性范围
纳米颗粒
抗体
纳米技术
材料科学
物理
量子力学
免疫学
生物
作者
Chan Zhang,Pengfei Du,Zejun Jiang,Maojun Jin,Ge Chen,Xiaolin Cao,Xueyan Cui,Yudan Zhang,Ruixing Li,A.M. Abd El‐Aty,Jing Wang
标识
DOI:10.1016/j.aca.2017.10.032
摘要
A simple and highly sensitive immunoassay based on a competitive binding and bio-barcode amplification was designed for detection of small molecules, triazophos. The gold nanoparticles (AuNPs) were modified with monoclonal antibodies and 6-carboxyfluorescein labeled single-stranded thiol-oligonucleotides (6-FAM-SH-ssDNAs); the fluorescence of 6-FAM was quenched by AuNPs. Ovalbumin-linked haptens were coated on the bottom of microplate to compete with the triazophos in the sample for binding to the antibodies on the AuNP probes. The fluorescence intensity was inversely proportional to analyte concentration. Parameters of AuNP probes preparation and immune reaction were optimized. At the optimal conditions, the salting process was shortened to 1 h and 166 ± 9 ssDNAs were loaded onto a single AuNP. The competitive fluorescence bio-barcode immunoassay was performed on water, rice, cucumber, cabbage and apple samples. The linear range of the method was 0.01-20 μg L-1and the limit of detection (LOD) was 6 ng L-1. The recovery and relative standard deviations (RSDs) ranged from 85.0 to 110.3% and 9.4-17.4%, respectively. Good correlations were obtained between the results of the developed method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In conclusion, it is suggested that the competitive fluorescent bio-barcode immunoassay had the potential to be used as a sensitive method for detection of a variety of small molecules in various samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI