First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials

尖晶石 空位缺陷 相图 材料科学 相(物质) 离子 亚稳态 集群扩展 动力学蒙特卡罗方法 溶解度 结晶学 热力学 化学物理 蒙特卡罗方法 物理化学 化学 冶金 物理 有机化学 统计 数学
作者
Hena Das,Alexander Urban,Wenxuan Huang,Gerbrand Ceder
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:29 (18): 7840-7851 被引量:77
标识
DOI:10.1021/acs.chemmater.7b02546
摘要

Despite several reports on the surface phase transformations from a layered to a disordered spinel and a rock-salt structure at the surface of the Ni-rich cathodes, the precise structures and compositions of these surface phases are unknown. The phenomenon, in itself, is complex and involves the participation of several contributing factors. Of these factors, transition metal (TM) ion migration toward the interior of the particle and hence formation of TM-densified surface layers, triggered by oxygen loss, is thermodynamically probable. Here, we simulate the thermodynamic phase equilibria as a function of TM ion content in the cathode material in the context of lithium nickel oxides, using a combined approach of first-principles density functional calculations, the cluster expansion method, and grand canonical Monte Carlo simulations. We developed a unified lattice Hamiltonian that accommodates not only rock-salt like structures but also topologically different spinel-like structures. Also, our model provides a foundation to investigate metastable cation compositions and kinetics of the phase transformations. Our investigations predict the existence of several Ni-rich phases that were, to date, unknown in the scientific literature. Our simulated phase diagrams at finite temperature show a very low solubility range of the prototype spinel phase. We find a partially disordered spinel-like phase with far greater solubility that is expected to show very different Li diffusivity compared to that of the prototype spinel structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助三虎科研采纳,获得30
1秒前
1秒前
1秒前
爪人猫完成签到,获得积分10
1秒前
星月发布了新的文献求助10
2秒前
热心乐驹完成签到,获得积分10
2秒前
2秒前
ding应助果汁豆浆采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
xiaoqin完成签到,获得积分10
3秒前
桐桐应助lingjiu采纳,获得10
3秒前
初亦非完成签到,获得积分10
4秒前
ly关闭了ly文献求助
4秒前
4秒前
Morning发布了新的文献求助10
4秒前
华仔应助曹沛岚采纳,获得10
4秒前
4秒前
wanghao完成签到,获得积分10
5秒前
Snoopy发布了新的文献求助10
5秒前
5秒前
佳丽发布了新的文献求助30
5秒前
5秒前
英姑应助科研通管家采纳,获得10
6秒前
stran发布了新的文献求助10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
深情安青应助zoey采纳,获得10
6秒前
6秒前
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
迟大猫应助科研通管家采纳,获得30
6秒前
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662961
求助须知:如何正确求助?哪些是违规求助? 3223721
关于积分的说明 9752858
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606229
邀请新用户注册赠送积分活动 758325
科研通“疑难数据库(出版商)”最低求助积分说明 734785