Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report

机器学习 逻辑回归 接收机工作特性 人工智能 决策树 支持向量机 医学 随机森林 人工神经网络 双膦酸盐 颌骨骨坏死 拔牙 计算机科学 曲线下面积 双膦酸盐相关性颌骨骨坏死 骨质疏松症 内科学 外科
作者
Dong Wook Kim,Hwiyoung Kim,Woong Nam,Hyung Jun Kim,In‐Ho Cha
出处
期刊:Bone [Elsevier BV]
卷期号:116: 207-214 被引量:78
标识
DOI:10.1016/j.bone.2018.04.020
摘要

The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis.A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results.The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630).Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11完成签到,获得积分10
1秒前
LJX完成签到,获得积分10
1秒前
1秒前
icebaby完成签到,获得积分10
2秒前
酷波er应助Cristoal采纳,获得10
3秒前
英俊的铭应助shx采纳,获得10
4秒前
小丁同学完成签到,获得积分10
5秒前
jhw发布了新的文献求助10
7秒前
天天快乐应助stretchability采纳,获得10
7秒前
chen完成签到 ,获得积分10
7秒前
今天只做一件事应助布通采纳,获得30
7秒前
8秒前
星辰大海应助橙子采纳,获得10
10秒前
liu发布了新的文献求助150
10秒前
11秒前
11秒前
12秒前
12秒前
斯文败类应助梨梨采纳,获得10
12秒前
Jasper应助仁爱的依波采纳,获得10
12秒前
12秒前
13秒前
解语花发布了新的文献求助30
13秒前
13秒前
Cristoal完成签到,获得积分20
13秒前
希度发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
斯文败类应助浅夏采纳,获得10
15秒前
玉子完成签到,获得积分10
16秒前
16秒前
斯坦森发布了新的文献求助10
16秒前
饱满的妙梦完成签到,获得积分20
16秒前
17秒前
归尘发布了新的文献求助10
17秒前
大气的代芙关注了科研通微信公众号
17秒前
Cristoal发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351