Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report

机器学习 逻辑回归 接收机工作特性 人工智能 决策树 支持向量机 医学 随机森林 人工神经网络 双膦酸盐 颌骨骨坏死 拔牙 计算机科学 曲线下面积 双膦酸盐相关性颌骨骨坏死 骨质疏松症 内科学 外科
作者
Dong Wook Kim,Hwiyoung Kim,Woong Nam,Hyung Jun Kim,In‐Ho Cha
出处
期刊:Bone [Elsevier]
卷期号:116: 207-214 被引量:47
标识
DOI:10.1016/j.bone.2018.04.020
摘要

The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis.A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results.The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630).Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦啦发布了新的文献求助10
1秒前
小杨发布了新的文献求助10
1秒前
1秒前
DayFu完成签到 ,获得积分10
1秒前
2秒前
3秒前
丘比特应助俊逸沛菡采纳,获得10
3秒前
99598发布了新的文献求助80
3秒前
村口小王完成签到,获得积分10
4秒前
whff完成签到,获得积分10
4秒前
4秒前
4秒前
赘婿应助超级的飞飞采纳,获得10
4秒前
6秒前
7秒前
7秒前
9秒前
舒心的草莓完成签到 ,获得积分20
10秒前
10秒前
桐桐应助栗子采纳,获得10
11秒前
艺艺发布了新的文献求助10
13秒前
舒心的草莓关注了科研通微信公众号
16秒前
16秒前
17秒前
Orange应助辛某采纳,获得10
17秒前
大小罐子发布了新的文献求助10
18秒前
情怀应助butterfly采纳,获得30
19秒前
缄默完成签到,获得积分10
22秒前
不筝发布了新的文献求助10
23秒前
23秒前
国色不染尘完成签到,获得积分10
23秒前
CodeCraft应助gx采纳,获得10
23秒前
和谐的如柏完成签到,获得积分10
24秒前
徐震完成签到,获得积分10
24秒前
细心的文涛完成签到,获得积分20
27秒前
27秒前
28秒前
Dec完成签到 ,获得积分10
28秒前
29秒前
CipherSage应助不筝采纳,获得10
30秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222582
求助须知:如何正确求助?哪些是违规求助? 2871280
关于积分的说明 8174713
捐赠科研通 2538283
什么是DOI,文献DOI怎么找? 1370395
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619592