Multi-scale object detection in remote sensing imagery with convolutional neural networks

计算机科学 目标检测 人工智能 卷积神经网络 特征(语言学) 对象(语法) 模式识别(心理学) 比例(比率) 领域(数学) 计算机视觉 深度学习 代表(政治) 特征提取 遥感 地理 数学 政治 哲学 地图学 法学 纯数学 语言学 政治学
作者
Zhipeng Deng,Hao Sun,Shilin Zhou,Jiewen Zhao,Lin Lei,Huanxin Zou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:145: 3-22 被引量:348
标识
DOI:10.1016/j.isprsjprs.2018.04.003
摘要

Automatic detection of multi-class objects in remote sensing images is a fundamental but challenging problem faced for remote sensing image analysis. Traditional methods are based on hand-crafted or shallow-learning-based features with limited representation power. Recently, deep learning algorithms, especially Faster region based convolutional neural networks (FRCN), has shown their much stronger detection power in computer vision field. However, several challenges limit the applications of FRCN in multi-class objects detection from remote sensing images: (1) Objects often appear at very different scales in remote sensing images, and FRCN with a fixed receptive field cannot match the scale variability of different objects; (2) Objects in large-scale remote sensing images are relatively small in size and densely peaked, and FRCN has poor localization performance with small objects; (3) Manual annotation is generally expensive and the available manual annotation of objects for training FRCN are not sufficient in number. To address these problems, this paper proposes a unified and effective method for simultaneously detecting multi-class objects in remote sensing images with large scales variability. Firstly, we redesign the feature extractor by adopting Concatenated ReLU and Inception module, which can increases the variety of receptive field size. Then, the detection is preformed by two sub-networks: a multi-scale object proposal network (MS-OPN) for object-like region generation from several intermediate layers, whose receptive fields match different object scales, and an accurate object detection network (AODN) for object detection based on fused feature maps, which combines several feature maps that enables small and densely packed objects to produce stronger response. For large-scale remote sensing images with limited manual annotations, we use cropped image blocks for training and augment them with re-scalings and rotations. The quantitative comparison results on the challenging NWPU VHR-10 data set, aircraft data set, Aerial-Vehicle data set and SAR-Ship data set show that our method is more accurate than existing algorithms and is effective for multi-modal remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qausyh完成签到,获得积分10
1秒前
齐天完成签到 ,获得积分10
2秒前
沙漠西瓜皮完成签到 ,获得积分10
2秒前
稀松完成签到,获得积分10
4秒前
lyj完成签到 ,获得积分10
6秒前
8秒前
General完成签到 ,获得积分10
10秒前
nano发布了新的文献求助10
12秒前
Summer_Xia完成签到 ,获得积分10
15秒前
Shrimp完成签到 ,获得积分10
29秒前
30秒前
liang完成签到 ,获得积分10
31秒前
雪妮完成签到 ,获得积分10
36秒前
彩色的芷容完成签到,获得积分20
37秒前
哈哈哈完成签到 ,获得积分10
45秒前
魏白晴完成签到,获得积分10
51秒前
於伟祺发布了新的文献求助10
1分钟前
kehe!完成签到 ,获得积分0
1分钟前
我可没时间狐闹完成签到 ,获得积分10
1分钟前
稻草人完成签到 ,获得积分10
1分钟前
秀丽奎完成签到 ,获得积分10
1分钟前
Owen应助琉璃岁月采纳,获得10
1分钟前
ken131完成签到 ,获得积分10
1分钟前
大意的绿蓉完成签到,获得积分10
1分钟前
cmd完成签到,获得积分10
1分钟前
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
ycp完成签到,获得积分10
1分钟前
白菜完成签到 ,获得积分10
1分钟前
於伟祺完成签到,获得积分10
1分钟前
zys2001mezy应助南风不竞采纳,获得10
1分钟前
何钦俊完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
西门子云完成签到,获得积分10
1分钟前
xingxing完成签到 ,获得积分10
1分钟前
煮饭吃Zz完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
你博哥完成签到 ,获得积分10
1分钟前
南风不竞完成签到,获得积分10
1分钟前
Dr.Dream完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311298
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516847
捐赠科研通 2619381
什么是DOI,文献DOI怎么找? 1432303
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856