Multi-scale object detection in remote sensing imagery with convolutional neural networks

计算机科学 目标检测 人工智能 卷积神经网络 特征(语言学) 对象(语法) 模式识别(心理学) 比例(比率) 领域(数学) 计算机视觉 深度学习 代表(政治) 特征提取 遥感 地理 数学 政治 哲学 地图学 法学 纯数学 语言学 政治学
作者
Zhipeng Deng,Hao Sun,Shilin Zhou,Jiewen Zhao,Lin Lei,Huanxin Zou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:145: 3-22 被引量:348
标识
DOI:10.1016/j.isprsjprs.2018.04.003
摘要

Automatic detection of multi-class objects in remote sensing images is a fundamental but challenging problem faced for remote sensing image analysis. Traditional methods are based on hand-crafted or shallow-learning-based features with limited representation power. Recently, deep learning algorithms, especially Faster region based convolutional neural networks (FRCN), has shown their much stronger detection power in computer vision field. However, several challenges limit the applications of FRCN in multi-class objects detection from remote sensing images: (1) Objects often appear at very different scales in remote sensing images, and FRCN with a fixed receptive field cannot match the scale variability of different objects; (2) Objects in large-scale remote sensing images are relatively small in size and densely peaked, and FRCN has poor localization performance with small objects; (3) Manual annotation is generally expensive and the available manual annotation of objects for training FRCN are not sufficient in number. To address these problems, this paper proposes a unified and effective method for simultaneously detecting multi-class objects in remote sensing images with large scales variability. Firstly, we redesign the feature extractor by adopting Concatenated ReLU and Inception module, which can increases the variety of receptive field size. Then, the detection is preformed by two sub-networks: a multi-scale object proposal network (MS-OPN) for object-like region generation from several intermediate layers, whose receptive fields match different object scales, and an accurate object detection network (AODN) for object detection based on fused feature maps, which combines several feature maps that enables small and densely packed objects to produce stronger response. For large-scale remote sensing images with limited manual annotations, we use cropped image blocks for training and augment them with re-scalings and rotations. The quantitative comparison results on the challenging NWPU VHR-10 data set, aircraft data set, Aerial-Vehicle data set and SAR-Ship data set show that our method is more accurate than existing algorithms and is effective for multi-modal remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘善宁完成签到,获得积分10
刚刚
刚刚
荔刻UTD关注了科研通微信公众号
2秒前
5秒前
研途完成签到,获得积分10
6秒前
zpj完成签到 ,获得积分10
8秒前
11秒前
梧桐发布了新的文献求助10
13秒前
13秒前
13秒前
kiki发布了新的文献求助10
15秒前
manggggo应助博修采纳,获得10
17秒前
霍冰旋完成签到,获得积分10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
20秒前
JamesPei应助荔刻UTD采纳,获得10
20秒前
善学以致用应助霍冰旋采纳,获得10
24秒前
27秒前
飘逸的凝荷完成签到,获得积分10
28秒前
酷波er应助SinaiPen采纳,获得10
30秒前
30秒前
hqq发布了新的文献求助30
31秒前
无花果应助hyfwkd采纳,获得10
32秒前
32秒前
32秒前
荔刻UTD发布了新的文献求助10
35秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
热木发布了新的文献求助10
36秒前
38秒前
Wakey发布了新的文献求助10
39秒前
忧虑的冷霜完成签到,获得积分10
40秒前
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150