Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study

2型糖尿病 代谢组学 内科学 医学 接收机工作特性 脂蛋白 糖尿病 Lasso(编程语言) 内分泌学 生物 肿瘤科 生物信息学 胆固醇 计算机科学 万维网
作者
Jun Liu,Sabina Semiz,Sven J. van der Lee,Ashley van der Spek,Aswin Verhoeven,Jan B. van Klinken,Eric J.G. Sijbrands,Amy C. Harms,Thomas Hankemeier,Ko Willems van Dijk,Cornelia M. van Duijn,Ayşe Demirkan
出处
期刊:Metabolomics [Springer Nature]
卷期号:13 (9) 被引量:83
标识
DOI:10.1007/s11306-017-1239-2
摘要

The growing field of metabolomics has opened up new opportunities for prediction of type 2 diabetes (T2D) going beyond the classical biochemistry assays.We aimed to identify markers from different pathways which represent early metabolic changes and test their predictive performance for T2D, as compared to the performance of traditional risk factors (TRF).We analyzed 2776 participants from the Erasmus Rucphen Family study from which 1571 disease free individuals were followed up to 14-years. The targeted metabolomics measurements at baseline were performed by three different platforms using either nuclear magnetic resonance spectroscopy or mass spectrometry. We selected 24 T2D markers by using Least Absolute Shrinkage and Selection operator (LASSO) regression and tested their association to incidence of disease during follow-up.The 24 markers i.e. high-density, low-density and very low-density lipoprotein sub-fractions, certain triglycerides, amino acids, and small intermediate compounds predicted future T2D with an area under the curve (AUC) of 0.81. The performance of the metabolic markers compared to glucose was significantly higher among the young (age < 50 years) (0.86 vs. 0.77, p-value <0.0001), the female (0.88 vs. 0.84, p-value =0.009), and the lean (BMI < 25 kg/m2) (0.85 vs. 0.80, p-value =0.003). The full model with fasting glucose, TRFs, and metabolic markers yielded the best prediction model (AUC = 0.89).Our novel prediction model increases the long-term prediction performance in combination with classical measurements, brings a higher resolution over the complexity of the lipoprotein component, increasing the specificity for individuals in the low risk group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助FUsir采纳,获得10
刚刚
贪玩小小完成签到 ,获得积分10
1秒前
山止川行完成签到 ,获得积分10
1秒前
卡拉尔德发布了新的文献求助10
1秒前
氘代乙腈是不贵的呀完成签到,获得积分10
1秒前
3秒前
3秒前
大个应助shain采纳,获得10
4秒前
隐形曼青应助杨叔叔采纳,获得10
5秒前
5秒前
Joshua发布了新的文献求助30
7秒前
田様应助Aru采纳,获得10
7秒前
8秒前
undertaker发布了新的文献求助10
8秒前
12秒前
12秒前
马马完成签到,获得积分10
12秒前
cocolu发布了新的文献求助10
13秒前
14秒前
FUsir完成签到,获得积分10
15秒前
15秒前
16秒前
复杂访冬完成签到 ,获得积分10
17秒前
领导范儿应助zls采纳,获得10
17秒前
丘比特应助lolo采纳,获得10
17秒前
萧水白应助ee采纳,获得10
18秒前
Aru发布了新的文献求助10
18秒前
shain发布了新的文献求助10
20秒前
20秒前
23秒前
24秒前
24秒前
CAIJING完成签到,获得积分10
26秒前
26秒前
研友_VZG7GZ应助li采纳,获得30
27秒前
圣晟胜完成签到,获得积分10
27秒前
张张张发布了新的文献求助10
28秒前
腾腾发布了新的文献求助10
28秒前
科研的苦发布了新的文献求助10
28秒前
脑洞疼应助KerwinYang采纳,获得30
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134