Massively Parallel Feature Selection Based on Ensemble of Filters and Multiple Robust Consensus Functions for Cancer Gene Identification

稳健性(进化) 特征选择 计算机科学 人工智能 机器学习 鉴定(生物学) 生物标志物发现 集成学习 数据挖掘 基因 生物 蛋白质组学 生物化学 植物
作者
Anouar Boucheham,Mohamed Batouche
出处
期刊:Studies in computational intelligence 卷期号:: 93-108 被引量:7
标识
DOI:10.1007/978-3-319-14654-6_6
摘要

Currently, cancer prevails as a prime health matter worldwide. Selecting the appropriate biomarkers for early cancer detection might improve patient care and have often driven revolutions in medicine. Statistics and machine learning techniques have been broadly investigated for biomarker identification, especially feature selection where researchers try to identify the most distinguishing genes that can achieve better predictive performance of cancer subtypes. The robustness of the selected signature remains a crucial goal in personalized medicine. Ensemble and parallel feature selection are promising techniques to overcome this problem in which they have seen an increasing use in biomarker discovery. We focus in this chapter on the principal aspects of using ensemble feature selection in biomarker discovery. Furthermore, we propose a massively parallel meta-ensemble of filters (MPME-FS) to select a robust and parsimonious subset of genes. Two types of filters (ReliefF and Information Gain) are investigated in this study. The performances of the proposed approach in terms of robustness, classification power and the biological meaning of the selected signatures on five publicly available cancer datasets are explored. The results attest that the MPME-FS approach can effectively identify a small subset of biomarkers and improve both robustness and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助孤独的幻香采纳,获得10
刚刚
1秒前
balabala发布了新的文献求助10
2秒前
老实小白菜完成签到,获得积分10
3秒前
3秒前
汉堡包应助Xailotier采纳,获得10
4秒前
YAMO一完成签到,获得积分10
4秒前
4秒前
李三阳完成签到 ,获得积分10
4秒前
千跃应助太清采纳,获得20
5秒前
悠旷完成签到 ,获得积分10
5秒前
爆米花应助past采纳,获得10
5秒前
刘壮实完成签到,获得积分10
5秒前
上官若男应助迷路芝麻采纳,获得10
5秒前
lb发布了新的文献求助10
6秒前
6秒前
大个应助na采纳,获得10
6秒前
kidmilli210发布了新的文献求助10
7秒前
7秒前
春天的粥完成签到 ,获得积分10
8秒前
8秒前
虚幻凡柔完成签到,获得积分20
9秒前
郭宏亮完成签到,获得积分10
9秒前
太清完成签到,获得积分10
9秒前
朱荧荧完成签到,获得积分10
10秒前
刘旭阳发布了新的文献求助10
10秒前
10秒前
大模型应助摆烂采纳,获得10
10秒前
10秒前
gattina发布了新的文献求助10
11秒前
Q-完成签到 ,获得积分20
11秒前
neurocf发布了新的文献求助30
12秒前
slsdianzi完成签到,获得积分10
12秒前
爱看文献的小羽毛完成签到,获得积分10
12秒前
打打应助moonlight采纳,获得10
12秒前
茉莉蜜茶完成签到,获得积分10
12秒前
12秒前
雪梅完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993