InMAP: A model for air pollution interventions

空气质量指数 空气污染 人口 环境科学 污染 网格 心理干预 计算机科学 气象学 环境卫生 数学 地理 生态学 医学 几何学 精神科 生物
作者
Christopher W. Tessum,Jason Hill,Julian Marshall
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:12 (4): e0176131-e0176131 被引量:208
标识
DOI:10.1371/journal.pone.0176131
摘要

Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小刘发布了新的文献求助10
刚刚
1秒前
1秒前
诚心冬亦发布了新的文献求助10
2秒前
2秒前
醉熏的朋友完成签到 ,获得积分10
4秒前
唔西迪西发布了新的文献求助10
5秒前
一盏壶发布了新的文献求助10
6秒前
12秒前
12秒前
嗯哼应助Yn_采纳,获得20
12秒前
请叫我风吹麦浪应助niko采纳,获得10
13秒前
琥珀川完成签到,获得积分10
14秒前
池鱼完成签到,获得积分10
14秒前
geoffreyfan完成签到,获得积分10
15秒前
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Candice应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
七月流火应助科研通管家采纳,获得100
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
大盏发布了新的文献求助10
18秒前
标致的发布了新的文献求助150
19秒前
20秒前
22秒前
编号89757完成签到,获得积分10
23秒前
24秒前
晨曦完成签到,获得积分10
25秒前
jimmy完成签到,获得积分10
25秒前
梦潜发布了新的文献求助10
26秒前
28秒前
28秒前
xixi发布了新的文献求助10
28秒前
hhh发布了新的文献求助10
29秒前
29秒前
31秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464375
求助须知:如何正确求助?哪些是违规求助? 3057717
关于积分的说明 9058109
捐赠科研通 2747718
什么是DOI,文献DOI怎么找? 1507609
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696159