铁电性
材料科学
压电
极地的
凝聚态物理
电介质
极化(电化学)
纳米尺度
相(物质)
纳米技术
光电子学
物理
复合材料
化学
物理化学
量子力学
天文
作者
Fei Li,Shujun Zhang,Tiannan Yang,Zhuo Xu,Nan Zhang,Gang Liu,Jianjun Wang,Jianli Wang,Zhenxiang Cheng,Zuo‐Guang Ye,Jun Luo,Thomas R. Shrout,Long‐Qing Chen
摘要
Abstract The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI