Utility of Novel Plasma Metabolic Markers in the Diagnosis of Pediatric Tuberculosis: A Classification and Regression Tree Analysis Approach

医学 肺结核 推车 代谢组学 内科学 结核分枝杆菌 队列 疾病 胃肠病学 生物信息学 病理 生物 机械工程 工程类
作者
Lin Sun,Jieqiong Li,Na Ren,Hui Qi,Fang Dong,Jing Xiao,Fang Xu,Weiwei Jiao,Chen Shen,Wenqi Song,Adong Shen
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:15 (9): 3118-3125 被引量:20
标识
DOI:10.1021/acs.jproteome.6b00228
摘要

Although tuberculosis (TB) has been the greatest killer due to a single infectious disease, pediatric TB is still hard to diagnose because of the lack of sensitive biomarkers. Metabolomics is increasingly being applied in infectious diseases. But little is known regarding metabolic biomarkers in children with TB. A combination of a NMR-based plasma metabolic method and classification and regression tree (CART) analysis was used to provide a broader range of applications in TB diagnosis in our study. Plasma samples obtained from 28 active TB children and 37 non-TB controls (including 21 RTIs and 16 healthy children) were analyzed by an orthogonal partial least-squares discriminant analysis (OPLS-DA) model, and 17 metabolites were identified that can separate children with TB from non-TB controls. CART analysis was then used to choose 3 of the markers, l-valine, pyruvic acid, and betaine, with the least error. The sensitivity, specificity, and area under the curve (AUC) of the 3 metabolites is 85.7% (24/28, 95% CI, 66.4%, 95.3%), 94.6% (35/37, 95% CI, 80.5%, 99.1%), and 0.984(95% CI, 0.917, 1.000), respectively. The 3 metabolites demonstrated sensitivity of 82.4% (14/17, 95% CI, 55.8%, 95.3%) and specificity of 83.9% (26/31, 95% CI, 65.5%, 93.9%), respectively, in 48 blinded subjects in an independent cohort. Taken together, the novel plasma metabolites are potentially useful for diagnosis of pediatric TB and would provide insights into the disease mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YaoX完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
YE发布了新的文献求助10
2秒前
2秒前
3秒前
张肥肥完成签到 ,获得积分20
3秒前
明亮的斩关注了科研通微信公众号
3秒前
科研通AI5应助搞怪的人龙采纳,获得10
3秒前
4秒前
xiuxiu_27完成签到 ,获得积分10
4秒前
李健应助qym采纳,获得10
5秒前
风趣的爆米花完成签到,获得积分20
5秒前
韭菜发布了新的文献求助10
5秒前
5秒前
5秒前
yzxzdm完成签到 ,获得积分10
6秒前
小破仁666发布了新的文献求助10
6秒前
6秒前
英姑应助优秀的逊采纳,获得10
7秒前
ccc完成签到,获得积分20
7秒前
7秒前
7秒前
小二郎应助诗谙采纳,获得10
7秒前
7秒前
7秒前
圣晟胜发布了新的文献求助10
8秒前
8秒前
等待幼荷完成签到,获得积分10
8秒前
笑言相欢ZMN完成签到,获得积分20
8秒前
8秒前
Eric发布了新的文献求助10
8秒前
gaos发布了新的文献求助10
9秒前
9秒前
9秒前
ipeakkka发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740