Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations

材料科学 中耳 软骨 丝绸 复合材料 极限抗拉强度 生物医学工程 声压 声学 解剖 化学 医学 生物化学 物理
作者
Benjamin J. Allardyce,Rangam Rajkhowa,Rodney J. Dilley,Zhigang Xie,Luke Campbell,Adrian Keating,Marcus D. Atlas,Magnus von Unge,Xungai Wang
出处
期刊:Journal of The Mechanical Behavior of Biomedical Materials [Elsevier BV]
卷期号:64: 65-74 被引量:21
标识
DOI:10.1016/j.jmbbm.2016.07.017
摘要

The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10–100 μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
kk119完成签到,获得积分10
4秒前
心想事成发布了新的文献求助10
4秒前
穆振家完成签到,获得积分10
4秒前
细腻的老九完成签到,获得积分10
5秒前
miro完成签到,获得积分10
6秒前
7秒前
fqy发布了新的文献求助10
7秒前
song发布了新的文献求助10
8秒前
9秒前
Grace完成签到 ,获得积分10
10秒前
11秒前
莹莹哒发布了新的文献求助10
12秒前
13秒前
CC完成签到,获得积分10
14秒前
14秒前
HHXYY完成签到 ,获得积分10
15秒前
15秒前
香查朵发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
18秒前
细心妙菡发布了新的文献求助10
18秒前
20秒前
飘逸易文发布了新的文献求助10
20秒前
沉默的香氛完成签到 ,获得积分10
21秒前
257发布了新的文献求助10
22秒前
gu发布了新的文献求助10
23秒前
fxy发布了新的文献求助10
23秒前
搜集达人应助CC采纳,获得10
23秒前
24秒前
ding应助vv采纳,获得10
25秒前
Owen应助fqy采纳,获得10
25秒前
滴滴哩哩完成签到,获得积分10
28秒前
英姑应助初空月儿采纳,获得10
29秒前
科研通AI5应助我想看文章采纳,获得30
29秒前
29秒前
飘逸易文完成签到,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296