热失控
阴极
面(心理学)
化学物理
氧气
尖晶石
离子
锂(药物)
氧化物
电子能量损失谱
透射电子显微镜
扫描透射电子显微镜
氧化锂
材料科学
化学
纳米技术
物理化学
电化学
电极
电池(电)
磷酸钒锂电池
内分泌学
心理学
社会心理学
功率(物理)
冶金
五大性格特征
医学
物理
有机化学
人格
量子力学
作者
Soroosh Sharifi‐Asl,Fernando A. Soto,Anmin Nie,Yifei Yuan,Hasti Asayesh‐Ardakani,Tara Foroozan,Vitaliy Yurkiv,Boao Song,Farzad Mashayek,Robert F. Klie,Khalil Amine,Jun Lü,Perla B. Balbuena,Reza Shahbazian‐Yassar
出处
期刊:Nano Letters
[American Chemical Society]
日期:2017-02-23
卷期号:17 (4): 2165-2171
被引量:118
标识
DOI:10.1021/acs.nanolett.6b04502
摘要
Thermal runaways triggered by the oxygen release from oxide cathode materials pose a major safety concern for widespread application of lithium ion batteries. Utilizing in situ aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) at high temperatures, we show that oxygen release from LixCoO2 cathode crystals is occurring at the surface of particles. We correlated this local oxygen evolution from the LixCoO2 structure with local phase transitions spanning from layered to spinel and then to rock salt structure upon exposure to elevated temperatures. Ab initio molecular dynamics simulations (AIMD) results show that oxygen release is highly dependent on LixCoO2 facet orientation. While the [001] facets are stable at 300 °C, oxygen release is observed from the [012] and [104] facets, where under-coordinated oxygen atoms from the delithiated structures can combine and eventually evolve as O2. The novel understanding that emerges from the present study provides in-depth insights into the thermal runaway mechanism of Li-ion batteries and can assist the design and fabrication of cathode crystals with the most thermally stable facets.
科研通智能强力驱动
Strongly Powered by AbleSci AI