EEG emotion recognition using multichannel weighted multiscale permutation entropy

计算机科学 模式识别(心理学) 脑电图 人工智能 熵(时间箭头) 特征(语言学) 频道(广播) 语音识别 心理学 计算机网络 语言学 哲学 物理 量子力学 精神科
作者
Zhongmin Wang,Jiawen Zhang,Yan He,Jie Zhang
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:52 (10): 12064-12076 被引量:22
标识
DOI:10.1007/s10489-021-03070-2
摘要

Electroencephalogram (EEG) signal is a time-varying and nonlinear spatial discrete signal, which has been widely used in the field of emotion recognition. Up to now, a large number of studies have chosen time–frequency domain features or extracted features through brain networks. However, partial spatial or time–frequency information of EEG signals will be lost when analyzing from a single point of view. At the same time, the network analysis based on EEG is largely affected by the inherent volume effect of EEG. Therefore, how to eliminate the influence of volume effect on brain network analysis and extract the features that can reflect both time–frequency information and spatial information is the problem we need to solve at present. In this paper, a feature fusion method that can better reflect the emotional state is proposed. This method uses multichannel weighted multiscale permutation entropy (MC-WMPE) as the feature. It not only takes into account the time–frequency and spatial information of EEG signals but also eliminates the inherent volume effect of EEG signals. We first calculate the multiscale permutation entropy (MPE) of the EEG signals in each channel and construct the brain functional network by calculating the Pearson correlation coefficient (PCC) between each channel. PageRank algorithm is used to sort the importance of nodes in the brain functional network, and the weight of each node is obtained to screen out the important channels in emotion recognition. Then the weights of each channel and the MPE are weighted combined to obtain MC-WMPE as the feature. The research shows that both temporal information and spatial information are of great significance in processing EEG signals. Moreover, the analysis of the frontal, parietal and occipital lobes is necessary for studying the activity state of the cerebral cortex under emotional stimulation. Finally, we carried out experiments on the DEAP and SEED database, and the highest accuracy rate of emotion recognition with this combination feature is 85.28% and 87.31%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到 ,获得积分20
刚刚
1秒前
渔渔驳回了所所应助
2秒前
科研通AI6应助xia采纳,获得30
3秒前
舒心半梦发布了新的文献求助10
4秒前
欢欢发布了新的文献求助10
4秒前
All_fly发布了新的文献求助10
5秒前
weimin关注了科研通微信公众号
6秒前
April发布了新的文献求助10
6秒前
9秒前
舒适梨愁发布了新的文献求助10
9秒前
汉堡包应助刻苦羽毛采纳,获得30
11秒前
浮游应助XL神放采纳,获得10
11秒前
科研通AI6应助he采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
酷波er应助小路采纳,获得10
13秒前
江楠发布了新的文献求助10
13秒前
超级Huan完成签到,获得积分10
13秒前
zhangzhaoxin完成签到,获得积分10
13秒前
tt驳回了cc应助
14秒前
酱酱完成签到,获得积分10
14秒前
14秒前
答案加载中完成签到 ,获得积分10
16秒前
雷家发布了新的文献求助10
16秒前
xn201120发布了新的文献求助10
17秒前
17秒前
18秒前
深情安青应助养生坤坤采纳,获得10
18秒前
汉堡包应助赵浩楠采纳,获得10
19秒前
20秒前
20秒前
缥缈橘子发布了新的文献求助10
20秒前
阳光谷完成签到,获得积分10
20秒前
美好的冰蓝完成签到 ,获得积分10
21秒前
lixiaorui发布了新的文献求助10
22秒前
科研通AI6应助江楠采纳,获得10
23秒前
酷波er应助雨雨爱薯条采纳,获得10
23秒前
852应助qq采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091