EEG emotion recognition using multichannel weighted multiscale permutation entropy

计算机科学 模式识别(心理学) 脑电图 人工智能 熵(时间箭头) 特征(语言学) 频道(广播) 语音识别 心理学 计算机网络 语言学 量子力学 精神科 物理 哲学
作者
Zhongmin Wang,Jiawen Zhang,Yan He,Jie Zhang
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:52 (10): 12064-12076 被引量:22
标识
DOI:10.1007/s10489-021-03070-2
摘要

Electroencephalogram (EEG) signal is a time-varying and nonlinear spatial discrete signal, which has been widely used in the field of emotion recognition. Up to now, a large number of studies have chosen time–frequency domain features or extracted features through brain networks. However, partial spatial or time–frequency information of EEG signals will be lost when analyzing from a single point of view. At the same time, the network analysis based on EEG is largely affected by the inherent volume effect of EEG. Therefore, how to eliminate the influence of volume effect on brain network analysis and extract the features that can reflect both time–frequency information and spatial information is the problem we need to solve at present. In this paper, a feature fusion method that can better reflect the emotional state is proposed. This method uses multichannel weighted multiscale permutation entropy (MC-WMPE) as the feature. It not only takes into account the time–frequency and spatial information of EEG signals but also eliminates the inherent volume effect of EEG signals. We first calculate the multiscale permutation entropy (MPE) of the EEG signals in each channel and construct the brain functional network by calculating the Pearson correlation coefficient (PCC) between each channel. PageRank algorithm is used to sort the importance of nodes in the brain functional network, and the weight of each node is obtained to screen out the important channels in emotion recognition. Then the weights of each channel and the MPE are weighted combined to obtain MC-WMPE as the feature. The research shows that both temporal information and spatial information are of great significance in processing EEG signals. Moreover, the analysis of the frontal, parietal and occipital lobes is necessary for studying the activity state of the cerebral cortex under emotional stimulation. Finally, we carried out experiments on the DEAP and SEED database, and the highest accuracy rate of emotion recognition with this combination feature is 85.28% and 87.31%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王博雅发布了新的文献求助10
1秒前
加油少年发布了新的文献求助10
1秒前
庄杰发布了新的文献求助10
3秒前
安琦发布了新的文献求助10
3秒前
gong发布了新的文献求助10
3秒前
NexusExplorer应助动听的谷秋采纳,获得10
3秒前
雨雨应助王小可采纳,获得10
3秒前
英俊的铭应助YZ采纳,获得10
4秒前
White.K发布了新的文献求助10
4秒前
uu关注了科研通微信公众号
4秒前
springlover完成签到,获得积分10
4秒前
约定发布了新的文献求助10
4秒前
bkagyin应助xxx采纳,获得10
4秒前
萨芬撒完成签到,获得积分10
4秒前
Xixicccccccc发布了新的文献求助10
4秒前
专注的问寒举报MC番薯求助涉嫌违规
5秒前
CipherSage应助Alan采纳,获得10
5秒前
xcm77发布了新的文献求助10
5秒前
释棱完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助30
6秒前
6秒前
Ayn发布了新的文献求助10
6秒前
You发布了新的文献求助10
6秒前
7秒前
9秒前
FashionBoy应助科研民工采纳,获得10
10秒前
灿烂千阳完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
NXK发布了新的文献求助10
11秒前
11秒前
11秒前
SciGPT应助no1isme采纳,获得10
11秒前
瓜瓜发布了新的文献求助10
11秒前
饱满的诗霜关注了科研通微信公众号
12秒前
cc应助wing采纳,获得20
12秒前
211发布了新的文献求助10
12秒前
修越完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932