EEG emotion recognition using multichannel weighted multiscale permutation entropy

计算机科学 模式识别(心理学) 脑电图 人工智能 熵(时间箭头) 特征(语言学) 频道(广播) 语音识别 心理学 计算机网络 语言学 量子力学 精神科 物理 哲学
作者
Zhongmin Wang,Jiawen Zhang,Yan He,Jie Zhang
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:52 (10): 12064-12076 被引量:17
标识
DOI:10.1007/s10489-021-03070-2
摘要

Electroencephalogram (EEG) signal is a time-varying and nonlinear spatial discrete signal, which has been widely used in the field of emotion recognition. Up to now, a large number of studies have chosen time–frequency domain features or extracted features through brain networks. However, partial spatial or time–frequency information of EEG signals will be lost when analyzing from a single point of view. At the same time, the network analysis based on EEG is largely affected by the inherent volume effect of EEG. Therefore, how to eliminate the influence of volume effect on brain network analysis and extract the features that can reflect both time–frequency information and spatial information is the problem we need to solve at present. In this paper, a feature fusion method that can better reflect the emotional state is proposed. This method uses multichannel weighted multiscale permutation entropy (MC-WMPE) as the feature. It not only takes into account the time–frequency and spatial information of EEG signals but also eliminates the inherent volume effect of EEG signals. We first calculate the multiscale permutation entropy (MPE) of the EEG signals in each channel and construct the brain functional network by calculating the Pearson correlation coefficient (PCC) between each channel. PageRank algorithm is used to sort the importance of nodes in the brain functional network, and the weight of each node is obtained to screen out the important channels in emotion recognition. Then the weights of each channel and the MPE are weighted combined to obtain MC-WMPE as the feature. The research shows that both temporal information and spatial information are of great significance in processing EEG signals. Moreover, the analysis of the frontal, parietal and occipital lobes is necessary for studying the activity state of the cerebral cortex under emotional stimulation. Finally, we carried out experiments on the DEAP and SEED database, and the highest accuracy rate of emotion recognition with this combination feature is 85.28% and 87.31%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dimysm完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
禹晓兰完成签到,获得积分10
4秒前
5秒前
竹园完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
DYW完成签到,获得积分10
9秒前
Jacky完成签到,获得积分10
9秒前
Li完成签到,获得积分20
10秒前
狂野的驳发布了新的文献求助10
11秒前
kiki647发布了新的文献求助10
11秒前
12秒前
小酒窝发布了新的文献求助10
12秒前
汪哈七发布了新的文献求助10
12秒前
豆浆来点蒜泥完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助10
13秒前
快乐应助香妃采纳,获得10
14秒前
najibveto应助史先森采纳,获得10
15秒前
cpuczy发布了新的文献求助10
15秒前
15秒前
钵钵鸡完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
Chb发布了新的文献求助10
17秒前
IBMffff应助lgh采纳,获得30
19秒前
英姑应助真三采纳,获得10
20秒前
mistylex完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905