EEG emotion recognition using multichannel weighted multiscale permutation entropy

计算机科学 模式识别(心理学) 脑电图 人工智能 熵(时间箭头) 特征(语言学) 频道(广播) 语音识别 心理学 计算机网络 语言学 量子力学 精神科 物理 哲学
作者
Zhongmin Wang,Jiawen Zhang,Yan He,Jie Zhang
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:52 (10): 12064-12076 被引量:22
标识
DOI:10.1007/s10489-021-03070-2
摘要

Electroencephalogram (EEG) signal is a time-varying and nonlinear spatial discrete signal, which has been widely used in the field of emotion recognition. Up to now, a large number of studies have chosen time–frequency domain features or extracted features through brain networks. However, partial spatial or time–frequency information of EEG signals will be lost when analyzing from a single point of view. At the same time, the network analysis based on EEG is largely affected by the inherent volume effect of EEG. Therefore, how to eliminate the influence of volume effect on brain network analysis and extract the features that can reflect both time–frequency information and spatial information is the problem we need to solve at present. In this paper, a feature fusion method that can better reflect the emotional state is proposed. This method uses multichannel weighted multiscale permutation entropy (MC-WMPE) as the feature. It not only takes into account the time–frequency and spatial information of EEG signals but also eliminates the inherent volume effect of EEG signals. We first calculate the multiscale permutation entropy (MPE) of the EEG signals in each channel and construct the brain functional network by calculating the Pearson correlation coefficient (PCC) between each channel. PageRank algorithm is used to sort the importance of nodes in the brain functional network, and the weight of each node is obtained to screen out the important channels in emotion recognition. Then the weights of each channel and the MPE are weighted combined to obtain MC-WMPE as the feature. The research shows that both temporal information and spatial information are of great significance in processing EEG signals. Moreover, the analysis of the frontal, parietal and occipital lobes is necessary for studying the activity state of the cerebral cortex under emotional stimulation. Finally, we carried out experiments on the DEAP and SEED database, and the highest accuracy rate of emotion recognition with this combination feature is 85.28% and 87.31%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AL完成签到,获得积分10
1秒前
清爽的人龙完成签到 ,获得积分10
1秒前
1秒前
2秒前
薏晓完成签到 ,获得积分10
2秒前
3秒前
馨达子发布了新的文献求助10
4秒前
4秒前
Jiayee发布了新的文献求助20
4秒前
darkside发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
魔幻颜发布了新的文献求助10
8秒前
cindy发布了新的文献求助10
8秒前
8秒前
天天向上完成签到 ,获得积分10
9秒前
激昂的吐司完成签到,获得积分10
10秒前
馨达子完成签到,获得积分10
12秒前
Eileen发布了新的文献求助30
13秒前
有脾气的番茄完成签到,获得积分10
13秒前
13秒前
王好完成签到 ,获得积分10
13秒前
14秒前
14秒前
Jasper应助polymer采纳,获得10
14秒前
14秒前
rong发布了新的文献求助10
14秒前
星辰大海应助顺顺顺采纳,获得30
15秒前
15秒前
17秒前
18秒前
老解发布了新的文献求助10
18秒前
Akim应助谭宇华采纳,获得10
19秒前
草莓苹果发布了新的文献求助10
19秒前
19秒前
bonnieeee777发布了新的文献求助10
20秒前
顾矜应助Www采纳,获得10
20秒前
20秒前
同瓜不同命完成签到,获得积分10
20秒前
22秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851