EEG emotion recognition using multichannel weighted multiscale permutation entropy

计算机科学 模式识别(心理学) 脑电图 人工智能 熵(时间箭头) 特征(语言学) 频道(广播) 语音识别 心理学 计算机网络 语言学 哲学 物理 量子力学 精神科
作者
Zhongmin Wang,Jiawen Zhang,Yan He,Jie Zhang
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:52 (10): 12064-12076 被引量:22
标识
DOI:10.1007/s10489-021-03070-2
摘要

Electroencephalogram (EEG) signal is a time-varying and nonlinear spatial discrete signal, which has been widely used in the field of emotion recognition. Up to now, a large number of studies have chosen time–frequency domain features or extracted features through brain networks. However, partial spatial or time–frequency information of EEG signals will be lost when analyzing from a single point of view. At the same time, the network analysis based on EEG is largely affected by the inherent volume effect of EEG. Therefore, how to eliminate the influence of volume effect on brain network analysis and extract the features that can reflect both time–frequency information and spatial information is the problem we need to solve at present. In this paper, a feature fusion method that can better reflect the emotional state is proposed. This method uses multichannel weighted multiscale permutation entropy (MC-WMPE) as the feature. It not only takes into account the time–frequency and spatial information of EEG signals but also eliminates the inherent volume effect of EEG signals. We first calculate the multiscale permutation entropy (MPE) of the EEG signals in each channel and construct the brain functional network by calculating the Pearson correlation coefficient (PCC) between each channel. PageRank algorithm is used to sort the importance of nodes in the brain functional network, and the weight of each node is obtained to screen out the important channels in emotion recognition. Then the weights of each channel and the MPE are weighted combined to obtain MC-WMPE as the feature. The research shows that both temporal information and spatial information are of great significance in processing EEG signals. Moreover, the analysis of the frontal, parietal and occipital lobes is necessary for studying the activity state of the cerebral cortex under emotional stimulation. Finally, we carried out experiments on the DEAP and SEED database, and the highest accuracy rate of emotion recognition with this combination feature is 85.28% and 87.31%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttttt完成签到,获得积分20
刚刚
科研通AI5应助abc采纳,获得10
1秒前
大白发布了新的文献求助10
2秒前
WWW发布了新的文献求助10
2秒前
203发布了新的文献求助10
2秒前
2秒前
wang发布了新的文献求助10
2秒前
miumiu发布了新的文献求助10
3秒前
栗子发布了新的文献求助10
3秒前
zy完成签到 ,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
思源应助qikuo采纳,获得10
8秒前
mimimi发布了新的文献求助10
8秒前
Koalas应助船锚在玉龙雪山采纳,获得10
9秒前
CJY1215发布了新的文献求助10
9秒前
烟花应助大白采纳,获得10
10秒前
10秒前
11秒前
魏冉发布了新的文献求助10
11秒前
wang完成签到,获得积分10
12秒前
在水一方应助momo采纳,获得10
13秒前
小李李发布了新的文献求助10
13秒前
liu完成签到,获得积分10
13秒前
Monster完成签到,获得积分10
14秒前
咕哒发布了新的文献求助50
16秒前
CipherSage应助栗子采纳,获得10
16秒前
烟花应助hujin采纳,获得10
17秒前
Ava应助蘑菇腿采纳,获得10
17秒前
xxsw发布了新的文献求助150
17秒前
California完成签到 ,获得积分10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104