Fault Diagnosis With Deep Learning for Standard and Asymmetric Involute Spur Gears

渐开线 正齿轮 刚度 丁坝 结构工程 振动 断层(地质) 渐开线齿轮 根本原因 工程类 噪音(视频) 计算机科学 人工智能 可靠性工程 声学 地质学 地震学 物理 图像(数学)
作者
Fatih Karpat,Ahmet Emir Dirik,Onur Can Kalay,Celalettin Yüce,Oğuz Doǧan,Burak Korcuklu
标识
DOI:10.1115/imece2021-73702
摘要

Abstract Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmetric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmetric and asymmetric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50–100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-offreedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmetric and asymmetric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmetric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多年以后完成签到,获得积分10
刚刚
Estrella应助hhhm采纳,获得10
2秒前
2秒前
Lucas应助胡思采纳,获得10
3秒前
3秒前
iNk应助琛哥物理采纳,获得10
4秒前
4秒前
善学以致用应助咕噜咕噜采纳,获得10
8秒前
W,xiaolei发布了新的文献求助10
8秒前
danjaun完成签到 ,获得积分10
9秒前
tzy完成签到,获得积分10
10秒前
11秒前
薰硝壤应助make217采纳,获得10
13秒前
杨枝甘露完成签到 ,获得积分10
13秒前
14秒前
冬月初二发布了新的文献求助10
15秒前
danjaun关注了科研通微信公众号
15秒前
李健应助hhhm采纳,获得10
15秒前
乐乐应助在雨里思考采纳,获得30
16秒前
zhuzhuxia发布了新的文献求助30
17秒前
充电宝应助Enkcy采纳,获得10
17秒前
18秒前
123发布了新的文献求助10
19秒前
张璋完成签到,获得积分10
19秒前
迪迪猪完成签到 ,获得积分10
19秒前
跳跃的易云完成签到 ,获得积分10
20秒前
22秒前
ffff发布了新的文献求助10
24秒前
W,xiaolei完成签到,获得积分10
24秒前
积极的小馒头应助liquor采纳,获得30
25秒前
干不动了完成签到,获得积分10
25秒前
juziyaya应助zhuzhuxia采纳,获得30
25秒前
是微微发布了新的文献求助10
26秒前
剁椒鱼头完成签到 ,获得积分10
26秒前
小林发布了新的文献求助10
27秒前
28秒前
Heisenberg发布了新的文献求助10
28秒前
30秒前
34秒前
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237