Fault Diagnosis With Deep Learning for Standard and Asymmetric Involute Spur Gears

渐开线 正齿轮 刚度 丁坝 结构工程 振动 断层(地质) 渐开线齿轮 根本原因 工程类 噪音(视频) 计算机科学 人工智能 可靠性工程 声学 地质学 地震学 物理 图像(数学)
作者
Fatih Karpat,Ahmet Emir Dirik,Onur Can Kalay,Celalettin Yüce,Oğuz Doǧan,Burak Korcuklu
标识
DOI:10.1115/imece2021-73702
摘要

Abstract Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmetric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmetric and asymmetric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50–100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-offreedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmetric and asymmetric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmetric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx发布了新的文献求助10
刚刚
大模型应助XL神放采纳,获得30
刚刚
QLZ发布了新的文献求助20
1秒前
一新完成签到,获得积分10
1秒前
正直的博完成签到,获得积分10
2秒前
仙棠完成签到,获得积分10
2秒前
3秒前
赘婿应助小巧含之采纳,获得10
4秒前
4秒前
海的呼唤发布了新的文献求助10
4秒前
跳跃的洪纲完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
7777完成签到,获得积分20
5秒前
zhangyu应助易达采纳,获得10
5秒前
正直的博发布了新的文献求助20
5秒前
5秒前
人谷完成签到 ,获得积分10
6秒前
7秒前
吃你家大米啦完成签到,获得积分10
7秒前
7秒前
shawn完成签到 ,获得积分10
8秒前
方听莲完成签到 ,获得积分10
8秒前
Tan发布了新的文献求助30
9秒前
xxxx完成签到,获得积分10
10秒前
爆米花应助樱桃小王子采纳,获得10
10秒前
12秒前
rookiefcb发布了新的文献求助10
12秒前
soda完成签到,获得积分10
12秒前
YX完成签到,获得积分10
14秒前
Ren应助zz采纳,获得10
14秒前
chyse发布了新的文献求助10
16秒前
rookiefcb完成签到,获得积分10
17秒前
科目三应助诚心的人达采纳,获得10
19秒前
脑洞疼应助冯宝宝采纳,获得10
19秒前
zihanwang应助跳跃的洪纲采纳,获得20
19秒前
19秒前
Ywr完成签到,获得积分10
20秒前
郑郑得富发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014