Fault Diagnosis With Deep Learning for Standard and Asymmetric Involute Spur Gears

渐开线 正齿轮 刚度 丁坝 结构工程 振动 断层(地质) 渐开线齿轮 根本原因 工程类 噪音(视频) 计算机科学 人工智能 可靠性工程 声学 地质学 地震学 物理 图像(数学)
作者
Fatih Karpat,Ahmet Emir Dirik,Onur Can Kalay,Celalettin Yüce,Oğuz Doǧan,Burak Korcuklu
标识
DOI:10.1115/imece2021-73702
摘要

Abstract Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmetric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmetric and asymmetric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50–100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-offreedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmetric and asymmetric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmetric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的嘉熙完成签到,获得积分20
刚刚
zack发布了新的文献求助10
刚刚
叶落天涯完成签到 ,获得积分10
1秒前
1秒前
无死何能生新颜完成签到,获得积分10
2秒前
静静应助zb采纳,获得10
2秒前
sanqiu发布了新的文献求助20
3秒前
4秒前
浮游应助尊敬寒松采纳,获得10
6秒前
Andrea0899发布了新的文献求助10
6秒前
Ting给Ting的求助进行了留言
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Zero完成签到,获得积分10
9秒前
xiaofeiyouyou完成签到,获得积分10
10秒前
不成安火发布了新的文献求助10
11秒前
沈家兴完成签到 ,获得积分10
11秒前
11秒前
zack完成签到,获得积分10
12秒前
yexu845发布了新的文献求助10
12秒前
13秒前
可恶地发布了新的文献求助10
14秒前
djbj2022发布了新的文献求助30
16秒前
acui完成签到,获得积分10
17秒前
Yinan完成签到,获得积分20
18秒前
19秒前
19秒前
19秒前
一只鱼完成签到,获得积分10
22秒前
在水一方应助Passskd采纳,获得10
23秒前
24秒前
张小闲发布了新的文献求助10
24秒前
pjl发布了新的文献求助10
24秒前
25秒前
手可摘星陈同学完成签到 ,获得积分10
25秒前
寒冷的初彤完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488