Fault Diagnosis With Deep Learning for Standard and Asymmetric Involute Spur Gears

渐开线 正齿轮 刚度 丁坝 结构工程 振动 断层(地质) 渐开线齿轮 根本原因 工程类 噪音(视频) 计算机科学 人工智能 可靠性工程 声学 地质学 地震学 物理 图像(数学)
作者
Fatih Karpat,Ahmet Emir Dirik,Onur Can Kalay,Celalettin Yüce,Oğuz Doǧan,Burak Korcuklu
标识
DOI:10.1115/imece2021-73702
摘要

Abstract Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmetric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmetric and asymmetric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50–100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-offreedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmetric and asymmetric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmetric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的流沙完成签到 ,获得积分10
1秒前
猫的海完成签到,获得积分10
1秒前
1秒前
Eason Liu完成签到,获得积分0
2秒前
Wendy1204完成签到,获得积分20
2秒前
Hello应助654采纳,获得10
2秒前
咩咩羊完成签到,获得积分10
2秒前
6秒前
lianqing完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
hh应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得30
7秒前
7秒前
Leif应助科研通管家采纳,获得20
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
忘羡222发布了新的文献求助20
10秒前
丰富猕猴桃完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
JamesPei应助咿咿呀呀采纳,获得10
11秒前
www完成签到,获得积分10
11秒前
科研通AI2S应助Jenny采纳,获得10
12秒前
limin完成签到,获得积分10
13秒前
13秒前
风格完成签到,获得积分10
14秒前
情怀应助专心搞学术采纳,获得20
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824