Fault Diagnosis With Deep Learning for Standard and Asymmetric Involute Spur Gears

渐开线 正齿轮 刚度 丁坝 结构工程 振动 断层(地质) 渐开线齿轮 根本原因 工程类 噪音(视频) 计算机科学 人工智能 可靠性工程 声学 地质学 地震学 物理 图像(数学)
作者
Fatih Karpat,Ahmet Emir Dirik,Onur Can Kalay,Celalettin Yüce,Oğuz Doǧan,Burak Korcuklu
标识
DOI:10.1115/imece2021-73702
摘要

Abstract Gears are critical power transmission elements used in various industries. However, varying working speeds and sudden load changes may cause root cracks, pitting, or missing tooth failures. The asymmetric tooth profile offers higher load-carrying capacity, long life, and the ability to lessen vibration than the standard (symmetric) profile spur gears. Gearbox faults that cannot be detected early may lead the entire system to stop or serious damage to the machine. In this regard, Deep Learning (DL) algorithms have started to be utilized for gear early fault diagnosis. This study aims to determine the root crack for both symmetric and asymmetric involute spur gears with a DL-based approach. To this end, single tooth stiffness of the gears was obtained with ANSYS software for healthy and cracked gears (50–100%), and then the time-varying mesh stiffness (TVMS) was calculated. A six-degrees-offreedom dynamic model was developed by deriving the equations of motion of a single-stage spur gear mechanism. The vibration responses were collected for the healthy state, 50% and 100% crack degrees for both symmetric and asymmetric tooth profiles. Furthermore, the white Gaussian noise was added to the vibration data to complicate the early crack diagnosis task. The main contribution of this paper is that it adapts the DL-based approaches used for early fault diagnosis in standard profile involute spur gears to the asymmetric tooth concept for the first time. The proposed method can eliminate the need for large amounts of training data from costly physical experiments. Therefore, maintenance strategies can be improved by early crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SHT完成签到,获得积分10
2秒前
精悯怜明完成签到,获得积分10
2秒前
4秒前
LYDZ1发布了新的文献求助10
5秒前
无风发布了新的文献求助10
6秒前
xunmacaoyan完成签到,获得积分10
7秒前
7秒前
abu完成签到,获得积分20
8秒前
bkagyin应助负减淇采纳,获得10
8秒前
8秒前
NexusExplorer应助大气的天蓝采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
程程程完成签到 ,获得积分10
12秒前
12秒前
14秒前
谭你脑瓜崩完成签到,获得积分20
15秒前
鲤鱼松鼠完成签到,获得积分10
15秒前
15秒前
dddd发布了新的文献求助10
15秒前
漫漫完成签到 ,获得积分10
17秒前
Lida完成签到,获得积分10
18秒前
18秒前
无花果应助霸气馒头采纳,获得30
19秒前
你干嘛完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
负减淇发布了新的文献求助10
24秒前
25秒前
25秒前
Orange应助氵酉采纳,获得10
25秒前
务实雨安完成签到,获得积分10
26秒前
27秒前
仂尤发布了新的文献求助10
28秒前
tY发布了新的文献求助10
28秒前
28秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
胶体中的相变和自组装 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071073
求助须知:如何正确求助?哪些是违规求助? 2725040
关于积分的说明 7488445
捐赠科研通 2372386
什么是DOI,文献DOI怎么找? 1257966
科研通“疑难数据库(出版商)”最低求助积分说明 610164
版权声明 596906