Encoded Feature Enhancement in Watermarking Network for Distortion in Real Scenes

水印 计算机科学 数字水印 稳健性(进化) 失真(音乐) 人工智能 相位畸变 编码器 图像质量 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 计算机视觉 图像(数学) 电信 带宽(计算) 操作系统 哲学 滤波器(信号处理) 基因 生物化学 化学 放大器 语言学
作者
Han Fang,Zhaoyang Jia,Hang Zhou,Zehua Ma,Weiming Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmm.2022.3149641
摘要

Deep-learning based watermarking framework has be extensively studied recently. The main structure of such framework is an encoder, a noise layer and a decoder. By training with different distortion sets in the noise layer, the whole network can realize different robustness. However, such framework has a huge drawback that is the noise layer must be differentiable, otherwise it cannot be trained end-to-end. But for practical use, much distortions are non-differentiable, so such framework cannot be applied. To address such limitations, this paper propose a triple-phase watermarking framework for practical distortions. The proposed framework consists of three phases including a noise-free initial phase, a mask-guided frequency enhancement phase and an adversarial-training phase. Phase 1 aims to initialize an encoder to embed watermark with high visual quality and a decoder to extract the watermark. In order to generate high quality watermarked image, we design the just noticeable difference (JND)-mask image loss in phase 1 to guide the encoder. At phase 2, based on the investigation of the encoded features and distortions, we propose a mask-guided frequency enhancement algorithm to enhance the encoded feature which ensures the survival of such features after distortion, so that there will be enough features to be learned in phase 3. And phase 3 aims to train a stronger decoder to extract the watermark from the image after practical distortions. The combination of these 3 phases can well handle the non-differentiable problems and make the whole network trainable. Various experiments indicate the superior performance of the proposed scheme in the view of traditional differentiable image processing distortion robustness and practical non-differentiable distortion robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun发布了新的文献求助10
刚刚
刚刚
汕头凯奇发布了新的文献求助30
刚刚
欣慰的不愁完成签到,获得积分10
1秒前
1秒前
小巧怀薇完成签到,获得积分10
1秒前
小二郎应助caden采纳,获得10
1秒前
烟花应助funguy采纳,获得10
1秒前
努力努力再努力完成签到,获得积分10
2秒前
3秒前
纪昕完成签到,获得积分10
3秒前
3秒前
FXDD完成签到,获得积分10
3秒前
WWWhy发布了新的文献求助10
3秒前
4秒前
4秒前
奋斗的绝悟应助费小曼采纳,获得10
4秒前
你的微笑我舍不得完成签到,获得积分10
4秒前
4秒前
曹道消发布了新的文献求助10
5秒前
dfg发布了新的文献求助10
5秒前
彭澎鹏发布了新的文献求助10
5秒前
叶远望完成签到 ,获得积分10
5秒前
6秒前
weiqimin发布了新的文献求助10
6秒前
6秒前
苏博儿完成签到,获得积分10
6秒前
Gakay完成签到,获得积分10
7秒前
知了睡醒了完成签到 ,获得积分10
7秒前
es发布了新的文献求助10
8秒前
8秒前
Liccx完成签到,获得积分10
8秒前
wangyu完成签到,获得积分10
8秒前
隐形曼青应助自然的书萱采纳,获得10
8秒前
siqilinwillbephd完成签到,获得积分10
8秒前
9秒前
9秒前
Sunny完成签到,获得积分20
10秒前
unicorn完成签到,获得积分10
10秒前
上官若男应助Sun采纳,获得10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443