Encoded Feature Enhancement in Watermarking Network for Distortion in Real Scenes

水印 计算机科学 数字水印 稳健性(进化) 失真(音乐) 人工智能 相位畸变 编码器 图像质量 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 计算机视觉 图像(数学) 电信 带宽(计算) 操作系统 哲学 滤波器(信号处理) 基因 生物化学 化学 放大器 语言学
作者
Han Fang,Zhaoyang Jia,Hang Zhou,Zehua Ma,Weiming Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2648-2660 被引量:24
标识
DOI:10.1109/tmm.2022.3149641
摘要

Deep-learning based watermarking framework has been extensively studied recently. The main structure of such framework is an encoder, a noise layer and a decoder. By training with different distortion sets in the noise layer, the whole network can realize different robustness. However, such framework has a huge drawback that the noise layer must be differentiable, otherwise it cannot be trained end-to-end. But for practical use, much distortions are non-differentiable, so such framework cannot be applied. To address such limitations, this paper propose a triple-phase watermarking framework for practical distortions. The proposed framework consists of three phases including a noise-free initial phase, a mask-guided frequency enhancement phase and an adversarial-training phase. Phase 1 aims to initialize an encoder to embed watermark with high visual quality and a decoder to extract the watermark. In order to generate high quality watermarked image, we design the just noticeable difference (JND)-mask image loss in phase 1 to guide the encoder. At phase 2, based on the investigation of the encoded features and distortions, we propose a mask-guided frequency enhancement algorithm to enhance the encoded feature which ensures the survival of such features after distortion, so that there will be enough features to be learned in phase 3. And phase 3 aims to train a stronger decoder to extract the watermark from the image after practical distortions. The combination of these 3 phases can well handle the non-differentiable problems and make the whole network trainable. Various experiments indicate the superior performance of the proposed scheme in the view of traditional differentiable image processing distortion robustness and practical non-differentiable distortion robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
边快乐9296完成签到,获得积分10
1秒前
Esther发布了新的文献求助50
1秒前
5秒前
10秒前
12秒前
Dester驳回了Akim应助
12秒前
12秒前
香蕉寒梅发布了新的文献求助10
12秒前
Zzz发布了新的文献求助10
12秒前
pilgrim应助晨曦采纳,获得10
12秒前
han123123发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
完美世界应助初空月儿采纳,获得10
15秒前
benhzh发布了新的文献求助10
16秒前
sunguowei完成签到,获得积分20
16秒前
子南发布了新的文献求助10
16秒前
eseme发布了新的文献求助10
17秒前
18秒前
95完成签到 ,获得积分10
20秒前
lkq发布了新的文献求助10
20秒前
打打应助Henvy采纳,获得10
22秒前
鎏祈完成签到,获得积分10
22秒前
不安的小鸽子完成签到,获得积分10
22秒前
24秒前
25秒前
gengsumin完成签到,获得积分10
25秒前
飘逸的靖巧完成签到,获得积分10
25秒前
26秒前
maowei完成签到,获得积分10
27秒前
28秒前
my发布了新的文献求助10
28秒前
28秒前
29秒前
de铭发布了新的文献求助10
29秒前
31秒前
Albert007发布了新的文献求助10
32秒前
打打应助衣吾余采纳,获得10
32秒前
科研通AI2S应助lkq采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720