Encoded Feature Enhancement in Watermarking Network for Distortion in Real Scenes

水印 计算机科学 数字水印 稳健性(进化) 失真(音乐) 人工智能 相位畸变 编码器 图像质量 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 计算机视觉 图像(数学) 电信 带宽(计算) 操作系统 哲学 滤波器(信号处理) 基因 生物化学 化学 放大器 语言学
作者
Han Fang,Zhaoyang Jia,Hang Zhou,Zehua Ma,Weiming Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2648-2660 被引量:24
标识
DOI:10.1109/tmm.2022.3149641
摘要

Deep-learning based watermarking framework has been extensively studied recently. The main structure of such framework is an encoder, a noise layer and a decoder. By training with different distortion sets in the noise layer, the whole network can realize different robustness. However, such framework has a huge drawback that the noise layer must be differentiable, otherwise it cannot be trained end-to-end. But for practical use, much distortions are non-differentiable, so such framework cannot be applied. To address such limitations, this paper propose a triple-phase watermarking framework for practical distortions. The proposed framework consists of three phases including a noise-free initial phase, a mask-guided frequency enhancement phase and an adversarial-training phase. Phase 1 aims to initialize an encoder to embed watermark with high visual quality and a decoder to extract the watermark. In order to generate high quality watermarked image, we design the just noticeable difference (JND)-mask image loss in phase 1 to guide the encoder. At phase 2, based on the investigation of the encoded features and distortions, we propose a mask-guided frequency enhancement algorithm to enhance the encoded feature which ensures the survival of such features after distortion, so that there will be enough features to be learned in phase 3. And phase 3 aims to train a stronger decoder to extract the watermark from the image after practical distortions. The combination of these 3 phases can well handle the non-differentiable problems and make the whole network trainable. Various experiments indicate the superior performance of the proposed scheme in the view of traditional differentiable image processing distortion robustness and practical non-differentiable distortion robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助lhz采纳,获得10
刚刚
1秒前
1秒前
水清木华发布了新的文献求助200
1秒前
丘比特应助烤麸采纳,获得10
1秒前
阿迪完成签到,获得积分10
1秒前
1秒前
2秒前
CipherSage应助三里墩头采纳,获得10
2秒前
2秒前
SciGPT应助Ever余儿采纳,获得10
2秒前
sketch发布了新的文献求助10
2秒前
阔达的孤丝完成签到,获得积分20
3秒前
英俊的铭应助唧唧采纳,获得10
3秒前
4秒前
4秒前
李爱国应助听闻采纳,获得10
5秒前
due发布了新的文献求助10
5秒前
大大怪发布了新的文献求助10
5秒前
wsh发布了新的文献求助10
5秒前
上官若男应助Loone采纳,获得10
5秒前
6秒前
zz完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
噜噜晓发布了新的文献求助10
7秒前
7秒前
北秋完成签到,获得积分10
8秒前
qp完成签到,获得积分10
8秒前
葛力完成签到,获得积分10
8秒前
9秒前
稀罕你完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
儒雅大白发布了新的文献求助10
10秒前
10秒前
慕青应助mzf采纳,获得10
10秒前
魔幻的尔容完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798