亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Encoded Feature Enhancement in Watermarking Network for Distortion in Real Scenes

水印 计算机科学 数字水印 稳健性(进化) 失真(音乐) 人工智能 相位畸变 编码器 图像质量 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 计算机视觉 图像(数学) 电信 带宽(计算) 操作系统 哲学 滤波器(信号处理) 基因 生物化学 化学 放大器 语言学
作者
Han Fang,Zhaoyang Jia,Hang Zhou,Zehua Ma,Weiming Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2648-2660 被引量:24
标识
DOI:10.1109/tmm.2022.3149641
摘要

Deep-learning based watermarking framework has been extensively studied recently. The main structure of such framework is an encoder, a noise layer and a decoder. By training with different distortion sets in the noise layer, the whole network can realize different robustness. However, such framework has a huge drawback that the noise layer must be differentiable, otherwise it cannot be trained end-to-end. But for practical use, much distortions are non-differentiable, so such framework cannot be applied. To address such limitations, this paper propose a triple-phase watermarking framework for practical distortions. The proposed framework consists of three phases including a noise-free initial phase, a mask-guided frequency enhancement phase and an adversarial-training phase. Phase 1 aims to initialize an encoder to embed watermark with high visual quality and a decoder to extract the watermark. In order to generate high quality watermarked image, we design the just noticeable difference (JND)-mask image loss in phase 1 to guide the encoder. At phase 2, based on the investigation of the encoded features and distortions, we propose a mask-guided frequency enhancement algorithm to enhance the encoded feature which ensures the survival of such features after distortion, so that there will be enough features to be learned in phase 3. And phase 3 aims to train a stronger decoder to extract the watermark from the image after practical distortions. The combination of these 3 phases can well handle the non-differentiable problems and make the whole network trainable. Various experiments indicate the superior performance of the proposed scheme in the view of traditional differentiable image processing distortion robustness and practical non-differentiable distortion robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
14秒前
量子星尘发布了新的文献求助10
20秒前
25秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
32秒前
隐形不凡完成签到,获得积分10
38秒前
温暖的乐蓉关注了科研通微信公众号
51秒前
李桂芳完成签到,获得积分10
52秒前
1分钟前
急诊守夜人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
robin完成签到 ,获得积分10
1分钟前
万能图书馆应助HH采纳,获得10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
英姑应助风华正茂采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得50
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Lulu发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
HH发布了新的文献求助10
2分钟前
Lulu完成签到,获得积分10
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
CC完成签到,获得积分10
3分钟前
badyoungboy完成签到,获得积分10
3分钟前
badyoungboy发布了新的文献求助10
3分钟前
北陌完成签到 ,获得积分10
3分钟前
领导范儿应助郭楠楠采纳,获得10
3分钟前
完美世界应助木棉采纳,获得10
3分钟前
Nature应助yangjian采纳,获得10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287