Frontiers and applications of polyoxometalates-based porous ionic crystals

计算机科学
作者
Wenyu Tian,Lin Guo,Hanbin Hu,Jin‐Feng Chu,Lei He,Yu‐Fei Song
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:67 (7): 655-669 被引量:1
标识
DOI:10.1360/tb-2021-1035
摘要

Polyoxometalates (denoted as POMs) are discrete metal-oxide anions of V, Mo, W, etc., with variable structures and sub-nanometer sizes. Plenty of POMs and their derivatives have been reported due to their oxygen-enriched surface and abundant substitutional chemistry. However, few studies have focused on the modulation of the counter cations so far. Different from common cations, such as Na+, NH4+ and other organic ammonium ions (tetramethylammonium, tetrabutylammonium, etc.), cation clusters with larger size can also be used as counter ions of POMs. They are arranged alternately through ionic bonds or hydrogen bonds to form the solid ionic crystal materials with special properties, which are named POM-based porous ionic crystals (PPICs). The use of cation clusters with different compositions greatly enriches the structure and type of PPICs, which further boosts the development of polyoxometalates chemistry. The POMs anions and large metal complex cations in PPICs are regularly arranged into a porous honeycomb or layered structure. Some PPICs also contain monovalent cations such as H+ and alkali metal ions to balance their extra negative charges. The use of ion clusters facilitates the formation of pore structures in the PPICs lattice because they can reduce the electrostatic interaction between cations and anions. Thus, the pore structure of PPICs is much larger than that of POMs. Note that the pore size in PPICs can be easily adjusted by changing the shape, size and charges of cation and anions. Apart from the electrostatic interaction, anisotropic π-π stacking and hydrogen bonding network among the components of PPICs also contribute to their assembly. All these interaction modes will affect the arrangement of anions and cations in the PPICs lattice, resulting in the formation of different hole sizes and various channels characteristics in the crystal lattice, such as hydrophilic, hydrophobic and amphiphilic pores. In addition, the long-range Coulomb interaction works isotropically, leading to the easy transformation of the flexible PPICs structure. Hence, the adjustment of the channel provides a useful strategy for constructing PPICs with unique structures. Most importantly, PPICs show better performance than individual components because they inherit the advantages from both anions and cations. Briefly, PPICs not only retain good redox reversibility, rich multi-electron transfer characteristics and strong Brønsted acidity of POMs, but also reserve the magnetic properties of large cation clusters. Therefore, the physical and chemical properties of PPICs can be modulated by the rational design of each component. The future research on PPICs should not be limited to expanding the categories of cations, and the innovative structural type of POMs is also an important aspect. In addition to the Keggin POMs, other POMs structures, such as Dawson, Anderson, and Preyssler, can also be used in PPICs, resulting in some unique properties. Besides, various POM-based materials (modified POMs or POM-based composites, etc.) can also be adopted to fabricate PPICs, which may bring unexpected performance. Thus, changing anions and cations makes PPICs have great potential in many interdisciplinary fields such as chemistry, materials science, and biomedicine. This review systematically summarizes the structural characteristics and composition of PPICs, which is essential for understanding the characteristics of PPICs, such as adjustable pore structure, unique redox behavior, strong acidity and magnetic properties. In general, PPICs with different properties can be constructed by using diverse POMs and distinct cation clusters, which will be widely applied in many fields such as guest adsorption, ion exchange, photoelectric catalysis, bioimaging and medical materials.


科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cldg应助的的得的采纳,获得10
1秒前
shy发布了新的文献求助10
1秒前
1秒前
阿卫完成签到,获得积分10
1秒前
独钓寒江雪完成签到 ,获得积分10
2秒前
yyy发布了新的文献求助10
2秒前
2秒前
cc完成签到,获得积分10
3秒前
大龙哥886完成签到,获得积分10
3秒前
James发布了新的文献求助10
4秒前
7秒前
7秒前
westbobo完成签到,获得积分10
7秒前
拼搏老鼠发布了新的文献求助10
8秒前
时尚的访彤完成签到,获得积分10
8秒前
8秒前
丘比特应助少年采纳,获得10
9秒前
10秒前
westbobo发布了新的文献求助10
10秒前
热爱生活的打工人完成签到,获得积分10
10秒前
鹿静白发布了新的文献求助10
11秒前
懒洋洋发布了新的文献求助10
12秒前
MY完成签到,获得积分10
12秒前
14秒前
标致的小天鹅完成签到,获得积分20
14秒前
拼搏老鼠完成签到,获得积分10
15秒前
16秒前
16秒前
ling完成签到 ,获得积分10
17秒前
18秒前
19秒前
追寻的若发布了新的文献求助10
20秒前
今后应助张张张张张采纳,获得10
22秒前
23秒前
23秒前
23秒前
荷戟执子手完成签到,获得积分10
23秒前
25秒前
泪流不止完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540791
求助须知:如何正确求助?哪些是违规求助? 3118044
关于积分的说明 9333589
捐赠科研通 2815888
什么是DOI,文献DOI怎么找? 1547918
邀请新用户注册赠送积分活动 721218
科研通“疑难数据库(出版商)”最低求助积分说明 712597