A Simple and Efficient Deep Learning-Based Framework for Automatic Fruit Recognition

深度学习 人工智能 计算机科学 卷积神经网络 机器学习 任务(项目管理) 深层神经网络 相似性(几何) 分割 人工神经网络 模式识别(心理学) 图像(数学) 经济 管理
作者
Dostdar Hussain,Israr Hussain,Muhammad Ismail,Amerah Alabrah,Syed Sajid Ullah,Hayat Mansoor Alaghbari
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-8 被引量:23
标识
DOI:10.1155/2022/6538117
摘要

Accurate detection and recognition of various kinds of fruits and vegetables by using the artificial intelligence (AI) approach always remain a challenging task due to similarity between various types of fruits and challenging environments such as lighting and background variations. Therefore, developing and exploring an expert system for automatic fruits' recognition is getting more and more important after many successful approaches; however, this technology is still far from being mature. The deep learning-based models have emerged as state-of-the-art techniques for image segmentation and classification and have a lot of promise in challenging domains such as agriculture, where they can deal with the large variability in data better than classical computer vision methods. In this study, we proposed a deep learning-based framework to detect and recognize fruits and vegetables automatically with difficult real-world scenarios. The proposed method might be helpful for the fruit sellers to identify and differentiate various kinds of fruits and vegetables that have similarities. The proposed method has applied deep convolutional neural network (DCNN) to the undertakings of distinguishing natural fruit images of the Gilgit-Baltistan (GB) region as this area is famous for fruits' production in Pakistan as well as in the world. The experimental outcomes demonstrate that the suggested deep learning algorithm has the effective capability of automatically recognizing the fruit with high accuracy of 96%. This high accuracy exhibits that the proposed approach can meet world application requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
有魅力荟发布了新的文献求助10
1秒前
程程发布了新的文献求助10
3秒前
33完成签到,获得积分20
9秒前
Nola完成签到 ,获得积分10
10秒前
tmobiusx完成签到,获得积分10
11秒前
雪山飞龙发布了新的文献求助30
13秒前
成就的孤晴完成签到 ,获得积分10
13秒前
15秒前
金轩完成签到 ,获得积分10
16秒前
魔幻以菱完成签到 ,获得积分10
19秒前
马季发布了新的文献求助10
20秒前
22秒前
franca2005完成签到 ,获得积分10
23秒前
xixihaha完成签到,获得积分10
24秒前
28秒前
sunwsmile完成签到 ,获得积分10
28秒前
monster完成签到 ,获得积分10
28秒前
科研通AI2S应助Ding-Ding采纳,获得10
29秒前
nancy吴完成签到 ,获得积分10
32秒前
34秒前
danli完成签到 ,获得积分10
36秒前
ding应助球球的铲屎官采纳,获得10
37秒前
baitaowl完成签到 ,获得积分10
38秒前
我就想看看文献完成签到 ,获得积分10
40秒前
马季完成签到,获得积分10
42秒前
白日焰火完成签到 ,获得积分10
48秒前
49秒前
森淼完成签到 ,获得积分10
52秒前
YifanWang应助一个小胖子采纳,获得10
52秒前
丘比特应助马季采纳,获得10
52秒前
53秒前
53秒前
科研小虫完成签到,获得积分10
55秒前
格林发布了新的文献求助10
57秒前
sci完成签到 ,获得积分10
1分钟前
一个小胖子完成签到,获得积分10
1分钟前
黑子完成签到 ,获得积分10
1分钟前
赘婿应助ZHUTOU采纳,获得10
1分钟前
缥缈的冬萱完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391147
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890