计算机科学
人工智能
钥匙(锁)
代表(政治)
模式识别(心理学)
卷积神经网络
机器学习
匹配(统计)
航程(航空)
深度学习
秩(图论)
比例(比率)
数学
统计
材料科学
物理
计算机安全
组合数学
量子力学
政治
政治学
法学
复合材料
作者
Axel Barroso Laguna,Krystian Mikolajczyk
标识
DOI:10.1109/tpami.2022.3145820
摘要
We introduce a novel approach for keypoint detection that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score, and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches and other benchmarks. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance, and complexity. Key.Net implementations in TensorFlow and PyTorch are available online.
科研通智能强力驱动
Strongly Powered by AbleSci AI