Action potential: generation and propagation

去极化 复极 膜电位 生物物理学 静息电位 细胞膜 细胞外 电化学梯度 细胞内 跨膜蛋白 超极化(物理学) 心脏动作电位
作者
Allan Fletcher
出处
期刊:Anaesthesia & Intensive Care Medicine [Elsevier]
标识
DOI:10.1016/j.mpaic.2021.11.014
摘要

Abstract

In the normal resting state, the plasma membrane of nerve and muscle cells generates a transmembrane electrical potential difference – the intracellular surface of the membrane being approximately 70–80 mV negative to the extracellular surface. This is a result of markedly different concentrations of ions inside and outside the cell, together with different membrane permeabilities to different ions that permits K+ to flow down their concentration gradient from inside to outside the cell. Nerve and muscle cells are ‘excitable' because they can react to external stimuli by generating an extremely rapid change in transmembrane electrical potential difference known as the action potential. This comprises an initial explosive increase in membrane Na+ permeability that allows these ions to flood down their concentration gradient into the cell, thereby depolarizing the membrane such that the potential difference is transiently reversed to a positive value. However, in nerve and skeletal muscle this lasts for only a millisecond, at which time the membrane potential is just as rapidly restored to its resting negative value (repolarization). These events are controlled by the brief opening and closing of voltage-activated sodium and potassium channels in the membrane. The key features of the action potential are that it is: (i) an all-or-none event, rather than a graded response; (ii) it is self-propagating, such that the wave of depolarization travels rapidly along the plasma membrane; and (iii) it is transient, such that membrane excitability is quickly restored. These features of the action potential allow rapid transfer of information along nerve axons in the nervous system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LpQGjn完成签到 ,获得积分10
1秒前
斯文败类应助小七采纳,获得10
2秒前
Aliofyou发布了新的文献求助10
2秒前
mufcyang完成签到,获得积分10
2秒前
隐形鸣凤完成签到,获得积分10
3秒前
4秒前
Sera完成签到,获得积分10
4秒前
5秒前
小居很哇塞完成签到,获得积分10
5秒前
冷傲静竹完成签到,获得积分10
6秒前
慕青应助魁梧的莫英采纳,获得10
6秒前
高天雨完成签到 ,获得积分10
7秒前
wssy完成签到,获得积分10
8秒前
呼呼呼发布了新的文献求助10
8秒前
花花哈发布了新的文献求助10
8秒前
DY发布了新的文献求助10
8秒前
科研通AI2S应助梨儿采纳,获得10
8秒前
9秒前
JamesPei应助一丝禅采纳,获得10
9秒前
Dr.Sun发布了新的文献求助10
10秒前
11秒前
11秒前
沉默的婴完成签到 ,获得积分10
11秒前
Q22应助wssy采纳,获得20
11秒前
Echodeng发布了新的文献求助10
11秒前
杨杨完成签到 ,获得积分10
12秒前
yuu完成签到,获得积分20
12秒前
13秒前
wxx完成签到,获得积分10
13秒前
沙世平完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助Ploaris采纳,获得10
14秒前
14秒前
15秒前
Jayzie关注了科研通微信公众号
15秒前
Lucas应助WCheng采纳,获得10
15秒前
16秒前
tdtk发布了新的文献求助10
16秒前
Dr.Sun完成签到,获得积分10
16秒前
大气的萃完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311586
求助须知:如何正确求助?哪些是违规求助? 2944410
关于积分的说明 8518837
捐赠科研通 2619769
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664704
邀请新用户注册赠送积分活动 649969