催化作用
质子交换膜燃料电池
沸石咪唑盐骨架
膜
热解
掺杂剂
碳纤维
材料科学
金属
化学
脱氢
化学工程
金属有机骨架
无机化学
复合材料
有机化学
吸附
冶金
复合数
工程类
兴奋剂
生物化学
光电子学
作者
Lei Shi,Xuanni Lin,Feng Liu,Yongde Long,Ruyi Cheng,Chun Hui Tan,Yang Liu,Chuangang Hu,Shenlong Zhao,Dong Liu
标识
DOI:10.1021/acscatal.2c00915
摘要
Atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts have emerged as the promising alternative to replace platinum-based catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their practical applications are restricted by the relatively low intrinsic activity, low utilization rate, and poor stability of atomic metal sites. Herein, we propose a simple but efficient strategy to synthesize a geometrically deformed single Fe site catalyst (d-SA-FeNC) by trace NaCl-coating-assisted pyrolysis of Fe-containing zeolitic imidazolate frameworks. Benefiting from the significantly exposed Fe-N4 active sites and enhanced mass transport by the hierarchically porous structure, the newly developed catalysts exhibit improved ORR performance in acidic media. Remarkably, the as-constructed membrane electrode assemblies achieve high peak power densities of 0.904 and 0.502 W cm–2 in H2–O2 and H2–air PEMFCs even at a low catalyst loading of 1 mg cm–2, respectively, revealing ultrahigh mass activity density. Both experimental and theoretical results reveal that the enhanced intrinsic activity is attributed to the synergy of deformed Fe-N4 moieties and the surrounding graphitic N dopant. In addition, the locally increased graphitization of the carbon matrix can efficiently reduce carbon corrosion, thereby promoting catalyst stability. This work provides useful guidance for the development of highly efficient ORR catalysts for PEMFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI