Recurrent Neural-Network-Based Model Predictive Control of a Plasma Etch Process

模型预测控制 控制器(灌溉) 控制理论(社会学) 计算机科学 PID控制器 蒙特卡罗方法 模型降阶 人工神经网络 应用数学 数学 算法 人工智能 控制工程 工程类 温度控制 投影(关系代数) 统计 农学 生物 控制(管理)
作者
Tianqi Xiao,Zhe Wu,Panagiotis D. Christofides,Antonios Armaou,Dong Ni
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (1): 638-652 被引量:13
标识
DOI:10.1021/acs.iecr.1c04251
摘要

In this article, we propose the development of a recurrent neural network (RNN)-based model predictive controller (MPC) for a plasma etch process on a three-dimensional substrate using inductive coupled plasma (ICP) analysis. Specifically, the plasma etch process is simulated by a multiscale model: (1) A macroscopic fluid model is applied to simulate the gas flows and chemical reactions of plasma. (2) A kinetic Monte Carlo (kMC) model is applied to simulate the etching process on the substrate. Subsequently, proper orthogonal decomposition (POD) is used to derive the empirical eigenfunctions of the plasma model. Then the empirical eigenfunctions are utilized as basis functions within a Galerkin's model reduction framework to compute a low-order system capturing dominant dynamics of the plasma model. Additionally, RNN is introduced to approximate dynamics of both the reduced-order plasma system and the microscopic etch process. The training data for the RNN models are generated from discrete sampling of open-loop simulations. A probability distribution function is also involved to present the stochastic characteristic of the kMC model. The trained RNN models are then implemented as the prediction model in the development of MPC to achieve desired control objectives. Closed-loop simulation results are presented to compare the performance of the model predictive controller and a proportional-integral (PI) controller, which show that the proposed MPC framework is effective and exhibits better performance than does a PI controller.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭子仪发布了新的文献求助10
1秒前
科研通AI6应助范fan采纳,获得30
1秒前
挽月白完成签到,获得积分10
1秒前
2秒前
嘿嘿发布了新的文献求助10
2秒前
3秒前
5秒前
5秒前
hony完成签到,获得积分10
8秒前
斯文败类应助郭子仪采纳,获得30
8秒前
9秒前
Thien应助lyp采纳,获得10
9秒前
9秒前
yyanxuemin919发布了新的文献求助10
10秒前
研友_Lmb15n发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
上帝粒子应助Liu采纳,获得50
13秒前
李伟峰完成签到,获得积分10
13秒前
14秒前
wy发布了新的文献求助10
14秒前
冷酷莫言发布了新的文献求助10
15秒前
qwer发布了新的文献求助10
15秒前
16秒前
嘿嘿发布了新的文献求助10
16秒前
jiabu完成签到 ,获得积分10
17秒前
学术费物发布了新的文献求助10
17秒前
17秒前
律香川照之完成签到,获得积分10
19秒前
看100篇文献完成签到,获得积分10
20秒前
sylus发布了新的文献求助10
21秒前
太兰完成签到 ,获得积分10
22秒前
wang完成签到,获得积分20
22秒前
23秒前
spc68应助chen采纳,获得10
23秒前
英姑应助暗中讨饭采纳,获得10
26秒前
只争朝夕应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432