Recurrent Neural-Network-Based Model Predictive Control of a Plasma Etch Process

模型预测控制 控制器(灌溉) 控制理论(社会学) 计算机科学 PID控制器 蒙特卡罗方法 模型降阶 人工神经网络 应用数学 数学 算法 人工智能 控制工程 工程类 温度控制 投影(关系代数) 统计 农学 生物 控制(管理)
作者
Tianqi Xiao,Zhe Wu,Panagiotis D. Christofides,Antonios Armaou,Dong Ni
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (1): 638-652 被引量:13
标识
DOI:10.1021/acs.iecr.1c04251
摘要

In this article, we propose the development of a recurrent neural network (RNN)-based model predictive controller (MPC) for a plasma etch process on a three-dimensional substrate using inductive coupled plasma (ICP) analysis. Specifically, the plasma etch process is simulated by a multiscale model: (1) A macroscopic fluid model is applied to simulate the gas flows and chemical reactions of plasma. (2) A kinetic Monte Carlo (kMC) model is applied to simulate the etching process on the substrate. Subsequently, proper orthogonal decomposition (POD) is used to derive the empirical eigenfunctions of the plasma model. Then the empirical eigenfunctions are utilized as basis functions within a Galerkin's model reduction framework to compute a low-order system capturing dominant dynamics of the plasma model. Additionally, RNN is introduced to approximate dynamics of both the reduced-order plasma system and the microscopic etch process. The training data for the RNN models are generated from discrete sampling of open-loop simulations. A probability distribution function is also involved to present the stochastic characteristic of the kMC model. The trained RNN models are then implemented as the prediction model in the development of MPC to achieve desired control objectives. Closed-loop simulation results are presented to compare the performance of the model predictive controller and a proportional-integral (PI) controller, which show that the proposed MPC framework is effective and exhibits better performance than does a PI controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助hhh采纳,获得10
1秒前
1秒前
1秒前
文艺的白开水完成签到,获得积分10
2秒前
wanci应助Roxy采纳,获得10
2秒前
Ava应助511采纳,获得10
2秒前
粗心的无剑完成签到 ,获得积分10
2秒前
3秒前
彭于晏应助sll采纳,获得10
3秒前
罗兴鲜发布了新的文献求助10
4秒前
4秒前
4秒前
核桃应助科研通管家采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
小张应助科研通管家采纳,获得10
5秒前
popvich应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得30
5秒前
小lu应助bdJ采纳,获得10
5秒前
冷艳迎蕾应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
namk完成签到,获得积分10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
黄紫红蓝发布了新的文献求助10
5秒前
???完成签到,获得积分10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
糊涂塌客完成签到,获得积分10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
伏坎完成签到,获得积分10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237