Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 生物 病理 考古
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106603-106603 被引量:105
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一日落叶发布了新的文献求助10
1秒前
shen发布了新的文献求助10
1秒前
洋溢完成签到,获得积分10
2秒前
Orange应助Mlwwq采纳,获得10
3秒前
3秒前
苒苒完成签到,获得积分10
3秒前
5秒前
xu发布了新的文献求助10
6秒前
黄黄黄发布了新的文献求助10
6秒前
FOCUS完成签到 ,获得积分10
7秒前
Crazy_Runner发布了新的文献求助10
7秒前
朱先生完成签到 ,获得积分10
8秒前
学徒发布了新的文献求助10
8秒前
白马爱毛驴完成签到,获得积分10
8秒前
8秒前
of发布了新的文献求助20
10秒前
李健的小迷弟应助杨佳霖采纳,获得10
13秒前
14秒前
14秒前
15秒前
SciGPT应助研友-wbg-LjbQIL采纳,获得10
16秒前
xu完成签到,获得积分20
16秒前
popdragon发布了新的文献求助10
16秒前
17秒前
从容果汁完成签到 ,获得积分10
17秒前
17秒前
迅速泽洋发布了新的文献求助10
18秒前
爆米花应助水123采纳,获得10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
大猪头发布了新的文献求助10
20秒前
戴帽子的花盆完成签到,获得积分10
20秒前
20秒前
3w完成签到,获得积分10
21秒前
樱桃窝窝头完成签到 ,获得积分10
22秒前
23秒前
24秒前
玩命的十三完成签到 ,获得积分10
24秒前
yy完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603709
求助须知:如何正确求助?哪些是违规求助? 4688692
关于积分的说明 14855500
捐赠科研通 4694733
什么是DOI,文献DOI怎么找? 2540943
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814