Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 考古 病理 生物
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106603-106603 被引量:70
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷笑完成签到,获得积分10
2秒前
孤独丹秋完成签到,获得积分10
4秒前
研友_VZG7GZ应助染染采纳,获得10
4秒前
异想天开完成签到,获得积分10
5秒前
5秒前
6秒前
诚心的雁发布了新的文献求助10
6秒前
6秒前
星辰大海应助xinL采纳,获得10
7秒前
7秒前
万能图书馆应助terryok采纳,获得10
7秒前
酷波er应助舒心小海豚采纳,获得10
7秒前
仿生人完成签到,获得积分10
8秒前
酷酷的如天完成签到,获得积分10
8秒前
疏雨发布了新的文献求助10
8秒前
别摆烂了发布了新的文献求助10
10秒前
CHBW发布了新的文献求助10
11秒前
12秒前
14秒前
yyzhou应助科研通管家采纳,获得10
14秒前
Criminology34应助Isla07采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得30
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Gauss应助科研通管家采纳,获得20
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244