已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 考古 病理 生物
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106603-106603 被引量:70
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老马哥完成签到 ,获得积分0
2秒前
迷人的天抒应助焦立超采纳,获得10
6秒前
薏米人儿完成签到 ,获得积分10
9秒前
Marciu33应助1234567采纳,获得20
10秒前
含糊的非笑完成签到,获得积分10
10秒前
znlion完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
HUO完成签到 ,获得积分10
16秒前
16秒前
Rondab应助科研通管家采纳,获得10
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
JJ完成签到,获得积分10
20秒前
芯之痕发布了新的文献求助10
22秒前
Trends发布了新的文献求助10
22秒前
hhhhhhhhhh完成签到 ,获得积分10
24秒前
鱼生完成签到,获得积分10
27秒前
李世航完成签到,获得积分10
27秒前
xixi完成签到 ,获得积分10
27秒前
swimming完成签到 ,获得积分10
27秒前
29秒前
果冻橙发布了新的文献求助10
33秒前
sjw发布了新的文献求助10
35秒前
wenlong完成签到 ,获得积分10
35秒前
35秒前
无花果应助Naturewoman采纳,获得10
36秒前
简单的季风完成签到 ,获得积分20
37秒前
无限的书芹完成签到 ,获得积分10
37秒前
39秒前
CR7应助咸鱼王采纳,获得20
40秒前
zzf完成签到,获得积分10
40秒前
suiyi发布了新的文献求助10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976572
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204365
捐赠科研通 3257284
什么是DOI,文献DOI怎么找? 1798667
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806577