Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 考古 病理 生物
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106603-106603 被引量:70
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单以冬发布了新的文献求助10
刚刚
1秒前
Leohp发布了新的文献求助10
1秒前
荀中道发布了新的文献求助10
1秒前
哈哈哈大赞完成签到,获得积分10
1秒前
澤少完成签到,获得积分10
1秒前
chen666完成签到,获得积分10
1秒前
2秒前
王锋完成签到,获得积分10
2秒前
晨Zhi完成签到,获得积分10
3秒前
4秒前
4秒前
cangye完成签到,获得积分10
5秒前
快乐的晟睿完成签到,获得积分10
5秒前
不要科研发布了新的文献求助10
5秒前
YU发布了新的文献求助10
5秒前
6秒前
7秒前
Yorshka完成签到,获得积分10
7秒前
8秒前
cxzdm发布了新的文献求助20
9秒前
9秒前
10秒前
LC发布了新的文献求助10
10秒前
Maroon5发布了新的文献求助10
10秒前
11秒前
hyper3than发布了新的文献求助10
12秒前
13秒前
勤奋的诗珊完成签到,获得积分10
14秒前
务实蜻蜓发布了新的文献求助10
14秒前
14秒前
广州队完成签到,获得积分10
14秒前
菲菲发布了新的文献求助10
15秒前
15秒前
情怀应助俊逸的银耳汤采纳,获得10
15秒前
15秒前
16秒前
sluck发布了新的文献求助10
17秒前
背后海亦发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004