Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 考古 病理 生物
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106603-106603 被引量:70
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11关闭了11文献求助
刚刚
1秒前
passion关注了科研通微信公众号
1秒前
wangqianyu完成签到,获得积分20
1秒前
所所应助无奈世立采纳,获得10
2秒前
cyy发布了新的文献求助10
3秒前
3秒前
甜甜发布了新的文献求助10
3秒前
3秒前
4秒前
yang12345678发布了新的文献求助10
4秒前
岁华完成签到,获得积分10
4秒前
lvlv发布了新的文献求助10
5秒前
尹忆梅完成签到,获得积分10
5秒前
白白完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
Ethan发布了新的文献求助10
6秒前
君知行完成签到,获得积分10
7秒前
7秒前
元谷雪发布了新的文献求助10
7秒前
欢呼的怀蝶完成签到,获得积分10
7秒前
地球发布了新的文献求助10
8秒前
8秒前
七科栗子发布了新的文献求助10
9秒前
9秒前
无花果应助xia采纳,获得10
10秒前
惊火完成签到,获得积分20
10秒前
wangwenzhe发布了新的文献求助10
11秒前
WCR完成签到 ,获得积分10
11秒前
11秒前
甜甜完成签到,获得积分10
11秒前
孟一帆完成签到,获得积分10
11秒前
13秒前
小七啊发布了新的文献求助10
13秒前
lkk发布了新的文献求助10
13秒前
Owen应助平凡的世界采纳,获得10
13秒前
13秒前
今后应助瘦瘦的问安采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131