Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery

叶面积指数 天蓬 遥感 植被(病理学) 归一化差异植被指数 环境科学 增强植被指数 植被指数 地理 农学 医学 生物 病理 考古
作者
Lang Qiao,Dehua Gao,Ruomei Zhao,Weijie Tang,Lulu An,Minzan Li,Hong Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:192: 106603-106603 被引量:70
标识
DOI:10.1016/j.compag.2021.106603
摘要

As an important indicator reflecting plant growth and canopy structure, accurate and rapid monitoring of the leaf area index (LAI) is very important for modern precision agriculture. The purpose of this study is to explore the potential of fusion of morphological information and spectral information in multiple growth periods of maize to improve the accuracy of LAI dynamic estimation. The multi-spectral sensor carried by the unmanned aerial vehicle (UAV) was used to collect remote sensing images of the maize canopy during the six growth stages. Three morphological parameters (canopy height, canopy coverage, and canopy volume) and two vegetation indices (normalized vegetation index (NDVI) and visible atmospheric vegetation index (VARI)) were extracted from image information and spectral information, respectively, and a LAI estimation model was constructed based on parameters fusion. The results showed that the morphological parameters and vegetation indices had the same time distribution law as LAI, and could be used to monitor crop LAI. At the same time, the study found that the fusion of canopy height, canopy coverage and canopy volume could further characterize the external morphological changes of crops and improved the accuracy of LAI dynamic estimation based on morphology, but there were still limitations in the seedling and milk stages. Furthermore, the fusion of canopy morphological parameters and vegetation indices could further improve the dynamic estimate accuracy of maize LAI, and showed better performance in all growth stages (Seedling stage: Rv2 = 0.688, RMSEP = 0.0493; Jointing stage: Rv2 = 0.860, RMSEP = 0.0847; Tasseling stage: Rv2 = 0.780, RMSEP = 0.1829; Silking stage: Rv2 = 0.794, RMSEP = 0.1981; Blister stage: Rv2 = 0.793, RMSEP = 0.1584; Milk stage: Rv2 = 0.708, RMSEP = 0.1396; All: Rv2 = 0.943, RMSEP = 0.2618). The results show that the fusion of image information and spectral information can improve the estimation accuracy of crop LAI and provide a feasible method for crop growth information monitoring based on UAV platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dqa完成签到,获得积分10
刚刚
wanci应助Yolen LI采纳,获得10
1秒前
呜呜呜关注了科研通微信公众号
1秒前
一程完成签到 ,获得积分10
1秒前
Daylight完成签到,获得积分10
2秒前
体贴不悔完成签到,获得积分10
2秒前
3秒前
Jack完成签到,获得积分10
5秒前
直率无春完成签到,获得积分10
5秒前
Dreamer0422发布了新的文献求助10
5秒前
冯大哥完成签到,获得积分10
6秒前
6秒前
6秒前
寒冷妙梦完成签到,获得积分10
7秒前
caisy完成签到,获得积分10
8秒前
东东q东东完成签到,获得积分10
8秒前
搬砖打工人完成签到,获得积分10
9秒前
apckkk完成签到 ,获得积分10
9秒前
青岛彭于晏完成签到 ,获得积分10
10秒前
cyd发布了新的文献求助10
10秒前
li完成签到,获得积分10
10秒前
10秒前
11秒前
极品小亮完成签到,获得积分10
11秒前
Yolen LI发布了新的文献求助10
12秒前
dxwy应助搬砖打工人采纳,获得10
12秒前
罗大大完成签到 ,获得积分10
13秒前
陈隆完成签到,获得积分10
13秒前
cavendipeng完成签到,获得积分10
14秒前
徐伟康完成签到 ,获得积分10
14秒前
14秒前
xfyxxh完成签到,获得积分10
14秒前
ProfWang发布了新的文献求助10
14秒前
天天快乐应助冰西瓜最棒_采纳,获得10
15秒前
聪明迎丝完成签到,获得积分20
15秒前
monoklatt完成签到,获得积分10
16秒前
健壮的月光完成签到,获得积分10
16秒前
科研小白兔完成签到,获得积分10
16秒前
dang_完成签到,获得积分10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147001
求助须知:如何正确求助?哪些是违规求助? 2798279
关于积分的说明 7827502
捐赠科研通 2454919
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565