A combination forecasting model based on hybrid interval multi-scale decomposition: Application to interval-valued carbon price forecasting

区间(图论) 自回归积分移动平均 希尔伯特-黄变换 计算机科学 人工神经网络 自回归模型 计量经济学 数学 时间序列 统计 人工智能 能量(信号处理) 组合数学
作者
Jinpei Liu,Piao Wang,Huayou Chen,Jiaming Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116267-116267 被引量:77
标识
DOI:10.1016/j.eswa.2021.116267
摘要

Forecasting carbon price accurately is of great significance to ensure the healthy development of the carbon market. However, due to the non-linearity, non-stationarity, and dynamic uncertainty of interval-valued carbon price, there are many challenges to forecast the interval-valued carbon price precisely and stably. Therefore, this paper proposes a combination forecasting model based on the hybrid interval multi-scale decomposition method and its application to forecasting interval-valued carbon prices. First, three interval multi-scale decomposition methods, including interval discrete wavelet transform method (IDWT), interval empirical mode decomposition method (IEMD), and interval variational mode decomposition method (IVMD), are developed to decompose the interval-valued carbon price into interval trend and residuals. Second, Generalized autoregressive conditional heteroskedasticity (GARCH), auto-regressive integrated moving average model (ARIMA), support vector regression model (SVR), backpropagation neural network (BPNN), and long short-term memory networks (LSTM) are used to forecast the interval trend and residuals. Third, through interval-valued reconstruction, the results of each single forecasting model for three different decomposition methods are obtained respectively. Finally, the combination forecasting results are obtained by the LSTM, which is employed as an ensemble tool. The empirical analysis results show that our proposed model is significantly superior to some benchmark models in terms of accuracy and stability, and is an effective model for forecasting interval-valued carbon prices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武雨寒发布了新的文献求助10
刚刚
1秒前
Orange应助Janx采纳,获得10
1秒前
lmwnb完成签到,获得积分10
2秒前
2秒前
俏皮的匕发布了新的文献求助10
3秒前
大个应助vvA11采纳,获得10
4秒前
4秒前
5秒前
Hshi完成签到,获得积分10
6秒前
6秒前
6秒前
cora完成签到 ,获得积分20
7秒前
知行者完成签到 ,获得积分10
7秒前
8秒前
温柔发布了新的文献求助10
8秒前
8秒前
Lucas应助俏皮的匕采纳,获得10
9秒前
桐桐应助雪白的凡灵采纳,获得10
10秒前
1221211发布了新的文献求助30
11秒前
ynn发布了新的文献求助10
11秒前
无奈的小虾米完成签到,获得积分10
12秒前
小小时光发布了新的文献求助10
13秒前
Ava应助vividkingking采纳,获得10
13秒前
14秒前
沉静的怜蕾完成签到,获得积分10
14秒前
彭于晏应助dagejing4055采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
vvA11完成签到,获得积分20
20秒前
山高鹭沅发布了新的文献求助10
20秒前
一一完成签到,获得积分10
20秒前
CodeCraft应助动听的笑南采纳,获得10
20秒前
bkagyin应助瞿选葵采纳,获得10
21秒前
温纲发布了新的文献求助10
21秒前
vvA11发布了新的文献求助10
22秒前
xlz1014完成签到,获得积分10
22秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463229
求助须知:如何正确求助?哪些是违规求助? 3056638
关于积分的说明 9053048
捐赠科研通 2746497
什么是DOI,文献DOI怎么找? 1506946
科研通“疑难数据库(出版商)”最低求助积分说明 696243
邀请新用户注册赠送积分活动 695849