作者
Ke Zhang,Qing Jing,Yuanye Chen,Xiaoling Liu,Xun Fu,Bing Jiang,Huibo Luo,Jing Yang,Rui Xue,Bruce Anderson,Mei Li,Xiaoting Li,Chen Wei,Liangqian Fan,Xiaohong Zhang
摘要
Increased agricultural surface runoff in rural watersheds is a leading cause of nonpoint source pollution. In this study, a new biomass concentrator reactor (BCR) is conducted to degrade simulated agricultural surface runoff for both start-up process and treatment process. The results show that both in the start-up phase and in the stable phase, BCR had a good degradation effect on simulated agricultural surface runoff. Within 13 days-15 days of completed start-up of BCR, degradation of COD can be considered to the first-order kinetics: lnCt=lnC0-0.1377t (R2 = 0.78). During the stabilization phase, the average removal rate of COD, NH4+-N, NO3--N, TN and TP from the effluents through the BCR membrane was 94.58%, 85.79%, 53.58%, 37.87%, and 60.62%, respectively, which was increased by 7.4%, 2.5%, 5.1%, 0.18% and 11.4%, respectively, compared to control experiment which the effluents without membrane. The pollutants degradation by BCR in stable phase show a partly relative model of Lawrence-McCarty equation, which the nitrogen and phosphorus degradation is vN=(4.1+S)/(2.53×S) (R2 = 0.69) and vP=(8.78+S)/(3.0×S) (R2 = 0.67), respectively. In the stable phase, the operation cost of BCR is about $0.08/(L•d). Future research on improved BCR maybe focus on the membrane pollution and cleaning, optimized operation conditions, new materials of membrane.