Wood moisture monitoring and classification in kiln‐dried timber

含水量 木材干燥 水分 分级(工程) 环境科学 工程类 数学 废物管理 土木工程 岩土工程 材料科学 复合材料
作者
Shaban Rahimi,Vahid Nasir,Stavros Avramidis,Farrokh Sassani
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (4) 被引量:6
标识
DOI:10.1002/stc.2911
摘要

Different mass timber structures require a specific range of wood moisture. Thus, moisture monitoring is a crucial quality control task during timber drying that impacts the properties and quality of the subsequent timber structures. Variations in the average and distribution of the final moisture can result in significant variations in the timber properties and thus negatively affect performance in service. This necessitates rigorous moisture monitoring and timber grading during and after kiln drying. This study aims to estimate the kiln-dried population final moisture distribution based on green timber characteristics and machine learning. This will facilitate the timber grading process by reducing the variation in the mechanical properties of the kiln-dried timber, as timbers with a higher chance of moisture variation will be identified before the drying process. Timber initial moisture, initial weight, basic density, and target moisture were used to train machine learning models. Linear discriminant analysis and decision tree were used for moisture classification. Principal component and variable clustering analysis were performed to study the critical parameters affecting the timber overdrying and underdrying. The results indicated that initial moisture level and weight are the essential variables, while density had the least significant effect on the performance of classification models. The decision tree approach exhibited better performance than discriminant analysis with ~91% classification accuracy proving the effectiveness of using initial timber properties for quality control and grading of kiln-dried timber.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Costing完成签到 ,获得积分10
3秒前
日出发布了新的文献求助10
5秒前
6秒前
所所应助日出采纳,获得10
9秒前
9秒前
11秒前
褚秋发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
英俊的铭应助甜甜的莞采纳,获得10
17秒前
18秒前
cyrong发布了新的文献求助10
18秒前
19秒前
琳琳完成签到,获得积分20
19秒前
21秒前
sevenvnennn关注了科研通微信公众号
22秒前
22秒前
24秒前
liiy完成签到,获得积分10
27秒前
anchor完成签到,获得积分10
27秒前
28秒前
28秒前
研友_VZG7GZ应助激昂的飞松采纳,获得10
29秒前
30秒前
WANDour完成签到 ,获得积分10
31秒前
hardworkcd应助SymBiol采纳,获得20
34秒前
34秒前
pzc完成签到 ,获得积分10
35秒前
36秒前
38秒前
佳宝(不可以喝但能吃完成签到,获得积分10
38秒前
38秒前
39秒前
香蕉冬云完成签到 ,获得积分10
39秒前
pzc关注了科研通微信公众号
40秒前
41秒前
科研通AI2S应助自由的笑容采纳,获得10
43秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416345
求助须知:如何正确求助?哪些是违规求助? 3018261
关于积分的说明 8883436
捐赠科研通 2705647
什么是DOI,文献DOI怎么找? 1483740
科研通“疑难数据库(出版商)”最低求助积分说明 685789
邀请新用户注册赠送积分活动 680968