刀切重采样
统计
抽样分布
线性判别分析
随机变量
分布(数学)
数学
应用数学
数学分析
估计员
出处
期刊:Springer series in statistics
日期:1992-01-01
卷期号:: 569-593
被引量:1241
标识
DOI:10.1007/978-1-4612-4380-9_41
摘要
We discuss the following problem given a random sample X = (X 1, X 2,…, X n) from an unknown probability distribution F, estimate the sampling distribution of some prespecified random variable R(X, F), on the basis of the observed data x. (Standard jackknife theory gives an approximate mean and variance in the case R(X, F) = \(\theta \left( {\hat F} \right) - \theta \left( F \right)\), θ some parameter of interest.) A general method, called the “bootstrap”, is introduced, and shown to work satisfactorily on a variety of estimation problems. The jackknife is shown to be a linear approximation method for the bootstrap. The exposition proceeds by a series of examples: variance of the sample median, error rates in a linear discriminant analysis, ratio estimation, estimating regression parameters, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI