Loss‐of‐function variants within LMOD1 actin‐binding site 2 cause pediatric intestinal pseudo‐obstruction by impairing protein stability and actin nucleation

错义突变 肌动蛋白 突变体 基因 生物 突变 遗传学 蛋白酶体 分子生物学 化学
作者
Keqiang Liu,Lina Lu,Shanshan Chen,Bei-Lin Gu,Hui Cai,Ying Wang,Wei Cai
出处
期刊:The FASEB Journal [Wiley]
卷期号:36 (3) 被引量:3
标识
DOI:10.1096/fj.202101395r
摘要

The leiomodin1 (LMOD1) gene, encoding a potent actin nucleator, was recently reported as a potential pathogenic gene of megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS, OMIM 619362). However, only a single patient has been reported to have LMOD1 mutations, and the underlying pathogenic mechanism remains unknown. Here, we described a male infant with LMOD1 mutations presenting typical symptoms of pediatric intestinal pseudo-obstruction (PIPO) but without megacystis and microcolon. Two compound heterozygous missense variants (c.1106C>T, p.T369M; c.1262G>A, p.R421H) were identified, both affecting highly conserved amino acid residues within the second actin-binding site (ABS2) domain of LMOD1. Expression analysis showed that both variants resulted in significantly reduced protein amounts, especially for p.T369M, which was almost undetectable. The reduction was only partially rescued by the proteasome inhibitor MG-132, indicating that there might be proteasome-independent pathways involved in the degradation of the mutant proteins. Molecular modeling showed that variant p.T369M impaired the local protein conformation of the ABS2 domain, while variant p.R421H directly impaired the intermolecular interaction between ABS2 and actin. Accordingly, both variants significantly damaged LMOD1-mediated actin nucleation. These findings provide further human genetic evidence supporting LMOD1 as a pathogenic gene underlying visceral myopathy including PIPO and MMIHS, strengthen the critical role of ABS2 domain in LMOD1-mediated actin nucleation, and moreover, reveal an unrecognized role of ABS2 in protein stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助古德曼采纳,获得10
2秒前
3秒前
3秒前
Akim应助925采纳,获得10
4秒前
hhhdw发布了新的文献求助10
5秒前
搜集达人应助xuulanni采纳,获得10
5秒前
Singularity应助NING采纳,获得10
6秒前
寒冷的奇异果完成签到,获得积分10
8秒前
深情安青应助庆次采纳,获得10
8秒前
科研通AI2S应助hanzhiyuxing采纳,获得10
8秒前
liuce0307完成签到,获得积分10
8秒前
9秒前
英姑应助ming采纳,获得10
10秒前
大橙子完成签到,获得积分10
10秒前
潇潇微雨发布了新的文献求助10
10秒前
10秒前
小马甲应助LLL采纳,获得50
11秒前
12秒前
TAO LEE完成签到 ,获得积分0
13秒前
15秒前
allezallez完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
yetao完成签到 ,获得积分10
18秒前
19秒前
大王完成签到,获得积分10
19秒前
21秒前
21秒前
xuulanni发布了新的文献求助10
22秒前
23秒前
24秒前
邹醉蓝完成签到,获得积分10
25秒前
26秒前
古德曼发布了新的文献求助10
26秒前
27秒前
hhhhhhh发布了新的文献求助10
27秒前
29秒前
29秒前
庆次发布了新的文献求助10
29秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462498
求助须知:如何正确求助?哪些是违规求助? 3056032
关于积分的说明 9050314
捐赠科研通 2745649
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696141
邀请新用户注册赠送积分活动 695654