神经影像学
计算机科学
模式
人工智能
背景(考古学)
数据科学
深度学习
可视化
模态(人机交互)
机器学习
心理学
神经科学
社会科学
生物
社会学
古生物学
作者
Weizheng Yan,Gang Qu,Wenxing Hu,Anees Abrol,Biao Cai,Chen Qiao,Sergey M. Plis,Yu‐Ping Wang,Jing Sui,Vince D. Calhoun
出处
期刊:IEEE Signal Processing Magazine
[Institute of Electrical and Electronics Engineers]
日期:2022-02-24
卷期号:39 (2): 87-98
被引量:42
标识
DOI:10.1109/msp.2021.3128348
摘要
Deep learning (DL) has been extremely successful when applied to the analysis of natural images. By contrast, analyzing neuroimaging data presents some unique challenges, including higher dimensionality, smaller sample sizes, multiple heterogeneous modalities, and a limited ground truth. In this article, we discuss DL methods in the context of four diverse and important categories in the neuroimaging field: classification/prediction, dynamic activity/connectivity, multimodal fusion, and interpretation/visualization. We highlight recent progress in each of these categories, discuss the benefits of combining data characteristics and model architectures, and derive guidelines for the use of DL in neuroimaging data. For each category, we also assess promising applications and major challenges to overcome. Finally, we discuss future directions of neuroimaging DL for clinical applications, a topic of great interest, touching on all four categories.
科研通智能强力驱动
Strongly Powered by AbleSci AI