已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CoCoNet—boosting RNA contact prediction by convolutional neural networks

Boosting(机器学习) 人工智能 卷积神经网络 核糖核酸 计算机科学 机器学习 人工神经网络 深度学习 生物 蛋白质结构预测 模式识别(心理学) 算法 蛋白质结构 基因 生物化学
作者
Mehari B Zerihun,Fabrizio Pucci,Alexander Schug
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:49 (22): 12661-12672 被引量:5
标识
DOI:10.1093/nar/gkab1144
摘要

Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满从蕾发布了新的文献求助10
1秒前
1秒前
程负暄完成签到 ,获得积分10
2秒前
2秒前
木木发布了新的文献求助50
2秒前
小蘑菇应助雅雅采纳,获得10
3秒前
陈年人少熬夜完成签到 ,获得积分0
4秒前
4秒前
5秒前
思源应助xiao6fan采纳,获得10
5秒前
王冰完成签到,获得积分10
6秒前
Okpooko发布了新的文献求助10
6秒前
7秒前
8秒前
活力怜雪发布了新的文献求助10
8秒前
Azhe发布了新的文献求助10
8秒前
10秒前
张倩完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
Da_Li关注了科研通微信公众号
12秒前
zhBian发布了新的文献求助10
13秒前
张倩发布了新的文献求助30
14秒前
jinlioze发布了新的文献求助10
15秒前
17秒前
影zi发布了新的文献求助10
17秒前
刘文鑫发布了新的文献求助10
17秒前
科研通AI6应助sherry采纳,获得10
17秒前
19秒前
二玥发布了新的文献求助10
20秒前
星辰大海应助爪人猫采纳,获得10
22秒前
Orange应助刘文鑫采纳,获得10
23秒前
Da_Li发布了新的文献求助10
24秒前
李健的小迷弟应助yjj采纳,获得10
24秒前
www发布了新的文献求助20
25秒前
薛不会发布了新的文献求助30
25秒前
浮游应助lawrence采纳,获得10
29秒前
无极微光应助大吉采纳,获得20
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567904
求助须知:如何正确求助?哪些是违规求助? 4652430
关于积分的说明 14700712
捐赠科研通 4594187
什么是DOI,文献DOI怎么找? 2520750
邀请新用户注册赠送积分活动 1492770
关于科研通互助平台的介绍 1463636