亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictions of component Remaining Useful Lifetime Using Bayesian Neural Network

预言 计算机科学 可靠性工程 可靠性(半导体) 人工神经网络 组分(热力学) 预测性维护 模块化设计 贝叶斯定理 贝叶斯概率 数据挖掘 机器学习 功率(物理) 人工智能 工程类 物理 量子力学 操作系统 热力学
作者
Andy Rivas,Gregory Delipei,Jason Hou
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:146: 104143-104143 被引量:18
标识
DOI:10.1016/j.pnucene.2022.104143
摘要

The Machine Prognostics and Health Management (PHM) are concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions are necessary when developing an efficient predictive maintenance (PdM) framework for equipment health assessment. If correctly implemented, a PdM framework can maximize the interval between maintenance operations, minimize the cost and number of unscheduled maintenance operations, and improve overall availability of the large facilities like nuclear power plants (NPPs). This is especially important for nuclear power facilities to maximize capacity factor and reliability. In this work, we propose a data-driven approach to make predictions of both the RUL and its uncertainty using a Bayesian Neural Network (BNN). The BNN utilizes the Bayes by backprop algorithm with variational inference to estimate the posterior distribution for each trainable parameter so that the model output is also a PDF from which one can draw the mean prediction and the associated uncertainty. To learn the correlations between various time-series sensor data measurements, a time window approach is implemented with a two-stage noise filtering process for incoming sensor measurements to enhance the feature extraction and overall model performance. As a proof of concept, the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPPS) datasets are utilized to assess the performance of the BNN model. The modeled system can be treated as a surrogate for turbine generators used in NPPs due to the similar mode of operation, degradation, and measurable variables. Comparisons against other state-of-the-art algorithms on the same datasets indicate that the BNN model can not only make predictions with comparable level of accuracy, but also offer the benefit of estimating uncertainty associated with the prediction. This additional uncertainty, which can be continuously updated as more measurement data are collected, can facilitate the decision-making process with a quantifiable confidence level within a PdM framework. Additional advantages of the BNN are showcased, such as providing component maintenance ranges and model executing frequency, with an example of how the BNN estimated uncertainty can be used to support the continuous predictive maintenance. A PdM framework based on a BNN will allow for utilities to make more informed decisions on the optimal time for maintenance so that the loss of revenue can be minimized from planned and unplanned maintenance outages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
云轩发布了新的文献求助10
10秒前
Hello应助lin采纳,获得10
14秒前
怡然自中完成签到 ,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
潇湘雪月完成签到,获得积分10
18秒前
shaylie完成签到 ,获得积分10
20秒前
婼汐完成签到 ,获得积分10
23秒前
26秒前
29秒前
lin发布了新的文献求助10
33秒前
43秒前
caca完成签到,获得积分0
45秒前
55秒前
Owen应助JulyP采纳,获得10
58秒前
南淮完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
cm发布了新的文献求助10
1分钟前
bkagyin应助Shutong采纳,获得10
1分钟前
Tristan完成签到 ,获得积分10
1分钟前
1分钟前
122319完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助cm采纳,获得10
1分钟前
1分钟前
Freddy完成签到 ,获得积分10
1分钟前
1分钟前
小白菜完成签到,获得积分10
1分钟前
ning完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
兜兜发布了新的文献求助10
1分钟前
娜娜完成签到,获得积分10
1分钟前
1分钟前
SQ完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628087
求助须知:如何正确求助?哪些是违规求助? 4715495
关于积分的说明 14963597
捐赠科研通 4785720
什么是DOI,文献DOI怎么找? 2555313
邀请新用户注册赠送积分活动 1516636
关于科研通互助平台的介绍 1477114