Predictions of component Remaining Useful Lifetime Using Bayesian Neural Network

预言 计算机科学 可靠性工程 可靠性(半导体) 人工神经网络 组分(热力学) 预测性维护 模块化设计 贝叶斯定理 贝叶斯概率 数据挖掘 机器学习 功率(物理) 人工智能 工程类 物理 操作系统 热力学 量子力学
作者
Andy Rivas,Gregory Delipei,Jason Hou
出处
期刊:Progress in Nuclear Energy [Elsevier]
卷期号:146: 104143-104143 被引量:12
标识
DOI:10.1016/j.pnucene.2022.104143
摘要

The Machine Prognostics and Health Management (PHM) are concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions are necessary when developing an efficient predictive maintenance (PdM) framework for equipment health assessment. If correctly implemented, a PdM framework can maximize the interval between maintenance operations, minimize the cost and number of unscheduled maintenance operations, and improve overall availability of the large facilities like nuclear power plants (NPPs). This is especially important for nuclear power facilities to maximize capacity factor and reliability. In this work, we propose a data-driven approach to make predictions of both the RUL and its uncertainty using a Bayesian Neural Network (BNN). The BNN utilizes the Bayes by backprop algorithm with variational inference to estimate the posterior distribution for each trainable parameter so that the model output is also a PDF from which one can draw the mean prediction and the associated uncertainty. To learn the correlations between various time-series sensor data measurements, a time window approach is implemented with a two-stage noise filtering process for incoming sensor measurements to enhance the feature extraction and overall model performance. As a proof of concept, the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPPS) datasets are utilized to assess the performance of the BNN model. The modeled system can be treated as a surrogate for turbine generators used in NPPs due to the similar mode of operation, degradation, and measurable variables. Comparisons against other state-of-the-art algorithms on the same datasets indicate that the BNN model can not only make predictions with comparable level of accuracy, but also offer the benefit of estimating uncertainty associated with the prediction. This additional uncertainty, which can be continuously updated as more measurement data are collected, can facilitate the decision-making process with a quantifiable confidence level within a PdM framework. Additional advantages of the BNN are showcased, such as providing component maintenance ranges and model executing frequency, with an example of how the BNN estimated uncertainty can be used to support the continuous predictive maintenance. A PdM framework based on a BNN will allow for utilities to make more informed decisions on the optimal time for maintenance so that the loss of revenue can be minimized from planned and unplanned maintenance outages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏雪无痕发布了新的文献求助10
1秒前
奋斗不止发布了新的文献求助10
2秒前
纯真的雁山完成签到 ,获得积分10
2秒前
CodeCraft应助mml采纳,获得10
2秒前
chen完成签到,获得积分10
2秒前
单纯乘风完成签到 ,获得积分10
3秒前
Singularity应助余晓雨采纳,获得10
4秒前
starry完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
wanci应助嘀嘀哒哒采纳,获得10
8秒前
阿飞发布了新的文献求助10
10秒前
10秒前
12秒前
沉积岩完成签到,获得积分10
14秒前
honghong发布了新的文献求助30
17秒前
朴素雁凡完成签到,获得积分10
19秒前
一只特立独行的朱完成签到,获得积分10
19秒前
Singularity应助阿飞采纳,获得10
21秒前
yy完成签到 ,获得积分10
24秒前
领导范儿应助单纯面包采纳,获得10
24秒前
xinC完成签到 ,获得积分10
25秒前
NexusExplorer应助紧张的妖妖采纳,获得10
26秒前
26秒前
哈哈哈哈发布了新的文献求助30
27秒前
29秒前
aaoo发布了新的文献求助10
30秒前
wenjian发布了新的文献求助10
31秒前
ding应助甜美的音响采纳,获得10
31秒前
32秒前
32秒前
希勤发布了新的文献求助10
34秒前
zhinian28完成签到 ,获得积分10
35秒前
焚风发布了新的文献求助10
37秒前
37秒前
阿飞完成签到,获得积分10
38秒前
嘀嘀哒哒发布了新的文献求助10
38秒前
无趣养乐多完成签到 ,获得积分10
38秒前
快乐小恬完成签到 ,获得积分10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023