已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictions of component Remaining Useful Lifetime Using Bayesian Neural Network

预言 计算机科学 可靠性工程 可靠性(半导体) 人工神经网络 组分(热力学) 预测性维护 模块化设计 贝叶斯定理 贝叶斯概率 数据挖掘 机器学习 功率(物理) 人工智能 工程类 物理 量子力学 操作系统 热力学
作者
Andy Rivas,Gregory Delipei,Jason Hou
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:146: 104143-104143 被引量:14
标识
DOI:10.1016/j.pnucene.2022.104143
摘要

The Machine Prognostics and Health Management (PHM) are concerned with the prediction of the Remaining Useful Lifetime (RUL) of assets. Accurate real-time RUL predictions are necessary when developing an efficient predictive maintenance (PdM) framework for equipment health assessment. If correctly implemented, a PdM framework can maximize the interval between maintenance operations, minimize the cost and number of unscheduled maintenance operations, and improve overall availability of the large facilities like nuclear power plants (NPPs). This is especially important for nuclear power facilities to maximize capacity factor and reliability. In this work, we propose a data-driven approach to make predictions of both the RUL and its uncertainty using a Bayesian Neural Network (BNN). The BNN utilizes the Bayes by backprop algorithm with variational inference to estimate the posterior distribution for each trainable parameter so that the model output is also a PDF from which one can draw the mean prediction and the associated uncertainty. To learn the correlations between various time-series sensor data measurements, a time window approach is implemented with a two-stage noise filtering process for incoming sensor measurements to enhance the feature extraction and overall model performance. As a proof of concept, the NASA Commercial Modular Aero Propulsion System Simulation (C-MAPPS) datasets are utilized to assess the performance of the BNN model. The modeled system can be treated as a surrogate for turbine generators used in NPPs due to the similar mode of operation, degradation, and measurable variables. Comparisons against other state-of-the-art algorithms on the same datasets indicate that the BNN model can not only make predictions with comparable level of accuracy, but also offer the benefit of estimating uncertainty associated with the prediction. This additional uncertainty, which can be continuously updated as more measurement data are collected, can facilitate the decision-making process with a quantifiable confidence level within a PdM framework. Additional advantages of the BNN are showcased, such as providing component maintenance ranges and model executing frequency, with an example of how the BNN estimated uncertainty can be used to support the continuous predictive maintenance. A PdM framework based on a BNN will allow for utilities to make more informed decisions on the optimal time for maintenance so that the loss of revenue can be minimized from planned and unplanned maintenance outages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻辣鱼头发布了新的文献求助10
4秒前
依依完成签到 ,获得积分10
6秒前
乐乐应助Fury采纳,获得10
7秒前
8秒前
哈哈完成签到 ,获得积分10
9秒前
mumufan完成签到,获得积分10
10秒前
13秒前
17秒前
大白完成签到 ,获得积分10
17秒前
千纸鹤完成签到 ,获得积分10
17秒前
风清扬发布了新的文献求助10
18秒前
聪慧不二完成签到 ,获得积分10
20秒前
joanna完成签到,获得积分10
20秒前
21秒前
Jes关闭了Jes文献求助
23秒前
一卷钢丝球完成签到 ,获得积分10
24秒前
炸鸡完成签到 ,获得积分10
25秒前
kalisu24发布了新的文献求助10
29秒前
xutong de完成签到,获得积分10
33秒前
37秒前
科研通AI2S应助夺命倩倩儿采纳,获得10
39秒前
42秒前
43秒前
pxb完成签到,获得积分10
44秒前
洪焕良完成签到,获得积分10
49秒前
49秒前
晚意完成签到 ,获得积分10
49秒前
雷锋发布了新的文献求助10
49秒前
平淡访冬完成签到 ,获得积分10
51秒前
李霞完成签到 ,获得积分20
52秒前
54秒前
奈布完成签到 ,获得积分10
55秒前
医疗废物专用车乘客完成签到,获得积分10
55秒前
wackykao完成签到 ,获得积分10
56秒前
思源应助nhh采纳,获得10
57秒前
clown发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
58秒前
Yiyyan完成签到,获得积分10
1分钟前
1分钟前
zhyzhy完成签到,获得积分20
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956962
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11111001
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234