Ultrahigh Photocatalytic CO2 Reduction Efficiency and Selectivity Manipulation by Single‐Tungsten‐Atom Oxide at the Atomic Step of TiO2

材料科学 光催化 选择性 催化作用 吸附 Atom(片上系统) 氧化物 二氧化钛 甲烷 解吸 光化学 纳米技术 无机化学 化学工程 物理化学 冶金 化学 有机化学 嵌入式系统 生物化学 工程类 计算机科学
作者
Yibo Feng,Cong Wang,Peixin Cui,Chong Li,Bin Zhang,Li‐Yong Gan,Shengbai Zhang,Xiaoxian Zhang,Xiaoyuan Zhou,Sun Zhiming,Kaiwen Wang,Youyu Duan,Hui Li,Kai Zhou,Hongwei Huang,Ang Li,Chunqiang Zhuang,Lihua Wang,Ze Zhang,Xiaodong Han
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (17) 被引量:172
标识
DOI:10.1002/adma.202109074
摘要

The photocatalytic CO2 reduction reaction is a sustainable route to the direct conversion of greenhouse gases into chemicals without additional energy consumption. Given the vast amount of greenhouse gas, numerous efforts have been devoted to developing inorganic photocatalysts, e.g., titanium dioxide (TiO2 ), due to their stability, low cost, and environmentally friendly properties. However, a more efficient TiO2 photocatalyst without noble metals is highly desirable for CO2 reduction, and it is both difficult and urgent to produce selectively valuable compounds. Here, a novel "single-atom site at the atomic step" strategy is developed by anchoring a single tungsten (W) atom site with oxygen-coordination at the intrinsic steps of classic TiO2 nanoparticles. The composition of active sites for CO2 reduction can be controlled by tuning the additional W5+ to form W5+ -O-Ti3+ sites, resulting in both significant CO2 reduction efficiency with 60.6 μmol g-1 h-1 and selectivity for methane (CH4 ) over carbon monoxide (CO), which exceeds those of pristine TiO2 by more than one order of magnitude. The mechanism relies on the accurate control of the single-atom sites at step with 22.8% coverage of surface sites and the subsequent excellent electron-hole separation along with the favorable adsorption-desorption of intermediates at the sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
qaq发布了新的文献求助10
2秒前
刘泽完成签到,获得积分10
3秒前
3秒前
陈陈发布了新的文献求助10
4秒前
4秒前
可爱的函函应助Alish采纳,获得100
5秒前
科目三应助wengjiaqi采纳,获得10
5秒前
专注梦松完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
9秒前
八荒来犬发布了新的文献求助10
9秒前
9秒前
10秒前
科目三应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Ava应助盟主采纳,获得10
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
huahero2025应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
huahero2025应助科研通管家采纳,获得10
12秒前
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
小小虾发布了新的文献求助10
12秒前
13秒前
燕尔蓝完成签到,获得积分10
13秒前
13秒前
优秀的枫完成签到,获得积分20
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300112
关于积分的说明 10112396
捐赠科研通 3014584
什么是DOI,文献DOI怎么找? 1655610
邀请新用户注册赠送积分活动 790023
科研通“疑难数据库(出版商)”最低求助积分说明 753549