Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

射线照相术 单室膝关节置换术 植入 医学 关节置换术 接收机工作特性 深度学习 口腔正畸科 算法 人工智能 外科 骨关节炎 计算机科学 替代医学 病理 内科学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:36 (3): 935-940 被引量:48
标识
DOI:10.1016/j.arth.2020.10.021
摘要

Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天真的和现实的电影家完成签到,获得积分10
1秒前
111完成签到,获得积分10
2秒前
大力的契完成签到,获得积分10
2秒前
2秒前
QQ完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
上官若男应助嘟嘟采纳,获得10
3秒前
晨雨完成签到,获得积分10
4秒前
张志顺完成签到,获得积分10
4秒前
tyhg完成签到,获得积分10
4秒前
无辜洋葱发布了新的文献求助10
4秒前
ape完成签到,获得积分20
4秒前
马保国123发布了新的文献求助10
5秒前
归海紫翠完成签到,获得积分10
5秒前
5秒前
岑夜南完成签到,获得积分10
5秒前
uniphoton完成签到,获得积分10
5秒前
FashionBoy应助zzznznnn采纳,获得10
5秒前
5秒前
哈哈发布了新的文献求助10
5秒前
成就的山水完成签到,获得积分10
6秒前
6秒前
6秒前
尚可完成签到 ,获得积分10
6秒前
赖道之发布了新的文献求助10
7秒前
完美世界应助yuan采纳,获得10
7秒前
丘比特应助bluer采纳,获得10
7秒前
好运来发布了新的文献求助10
7秒前
榕俊完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
卡卡发布了新的文献求助10
8秒前
zouzou完成签到,获得积分10
9秒前
9秒前
CodeCraft应助FFF采纳,获得10
10秒前
冰河完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762