Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

射线照相术 单室膝关节置换术 植入 医学 关节置换术 接收机工作特性 深度学习 口腔正畸科 算法 人工智能 外科 骨关节炎 计算机科学 内科学 病理 替代医学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan L. Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:36 (3): 935-940 被引量:65
标识
DOI:10.1016/j.arth.2020.10.021
摘要

Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研鸟发布了新的文献求助10
1秒前
3秒前
情怀应助落寞银耳汤采纳,获得10
3秒前
XXXXX完成签到,获得积分10
3秒前
FrozNineTivus完成签到,获得积分10
6秒前
听风发布了新的文献求助10
6秒前
CipherSage应助念姬采纳,获得10
10秒前
腼腆的梦蕊完成签到 ,获得积分10
10秒前
Neuro_dan完成签到,获得积分0
10秒前
pluto应助熊猫文文采纳,获得10
12秒前
无情的水蓉完成签到,获得积分10
12秒前
13秒前
JamesPei应助丰那个丰采纳,获得10
14秒前
酷波er应助000采纳,获得10
14秒前
yangjian完成签到 ,获得积分10
14秒前
15秒前
傅勃霖发布了新的文献求助10
16秒前
苹果秋灵发布了新的文献求助10
19秒前
张雷应助22222采纳,获得30
19秒前
XLL小绿绿发布了新的文献求助10
19秒前
所所应助YYY采纳,获得10
20秒前
21秒前
han完成签到 ,获得积分10
23秒前
an发布了新的文献求助10
24秒前
517843291完成签到,获得积分10
25秒前
26秒前
000发布了新的文献求助10
26秒前
29秒前
29秒前
YYY完成签到,获得积分10
31秒前
logo关注了科研通微信公众号
32秒前
YYY发布了新的文献求助10
34秒前
han发布了新的文献求助30
36秒前
towerman完成签到,获得积分10
38秒前
38秒前
38秒前
和谐的雅旋完成签到,获得积分10
39秒前
小沈发布了新的文献求助10
41秒前
牛牛眉目发布了新的文献求助10
43秒前
隐形曼青应助科研通管家采纳,获得10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388