Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

射线照相术 单室膝关节置换术 植入 医学 关节置换术 接收机工作特性 深度学习 口腔正畸科 算法 人工智能 外科 骨关节炎 计算机科学 替代医学 病理 内科学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:36 (3): 935-940 被引量:48
标识
DOI:10.1016/j.arth.2020.10.021
摘要

Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUIJI发布了新的文献求助10
刚刚
fsznc1完成签到 ,获得积分0
1秒前
未成年面包完成签到,获得积分10
1秒前
kento应助isabellae采纳,获得100
3秒前
坚强志泽完成签到 ,获得积分10
4秒前
小小月发布了新的文献求助10
4秒前
爱吃罗勒意面的葡萄完成签到,获得积分10
4秒前
岳努力岳幸运完成签到 ,获得积分10
5秒前
skysleeper完成签到,获得积分10
5秒前
Shirley应助扭一扭泡一泡采纳,获得10
5秒前
能力越小责任越小完成签到,获得积分20
10秒前
10秒前
12秒前
小王小王完成签到 ,获得积分10
14秒前
14秒前
Mengjie完成签到,获得积分10
15秒前
zhing完成签到,获得积分10
16秒前
16秒前
阳光的静白完成签到,获得积分10
16秒前
Clarence应助复杂的如萱采纳,获得10
17秒前
Kelly1426完成签到,获得积分10
17秒前
18秒前
少一点丶天分完成签到,获得积分10
18秒前
季生发布了新的文献求助10
18秒前
迷城完成签到,获得积分20
19秒前
炸药发布了新的文献求助10
20秒前
hahahayi发布了新的文献求助10
20秒前
氟兊锝钼完成签到 ,获得积分10
20秒前
李亭完成签到 ,获得积分10
21秒前
丘比特应助任梓宁采纳,获得10
21秒前
木槿花难开完成签到,获得积分10
22秒前
勤劳寒烟完成签到,获得积分10
23秒前
DS完成签到,获得积分10
23秒前
24秒前
一缕炊烟照月明完成签到,获得积分20
24秒前
25秒前
笃定发布了新的文献求助10
26秒前
hahahayi完成签到,获得积分10
26秒前
27秒前
wang发布了新的文献求助100
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023