射线照相术
单室膝关节置换术
植入
医学
关节置换术
接收机工作特性
深度学习
口腔正畸科
算法
人工智能
外科
骨关节炎
计算机科学
替代医学
病理
内科学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
标识
DOI:10.1016/j.arth.2020.10.021
摘要
Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
科研通智能强力驱动
Strongly Powered by AbleSci AI