Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

射线照相术 单室膝关节置换术 植入 医学 关节置换术 接收机工作特性 深度学习 口腔正畸科 算法 人工智能 外科 骨关节炎 计算机科学 内科学 病理 替代医学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan L. Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:36 (3): 935-940 被引量:65
标识
DOI:10.1016/j.arth.2020.10.021
摘要

Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepvvvvirtue完成签到 ,获得积分10
刚刚
yjn完成签到,获得积分10
刚刚
森森完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
见微完成签到,获得积分10
2秒前
Ally发布了新的文献求助10
2秒前
3秒前
褚蕴发布了新的文献求助10
3秒前
木鱼发布了新的文献求助10
4秒前
4秒前
5秒前
yuchen完成签到,获得积分10
6秒前
搜集达人应助yar采纳,获得10
6秒前
zh123完成签到,获得积分10
6秒前
qiqi77ya发布了新的文献求助30
7秒前
heth完成签到,获得积分10
7秒前
10完成签到,获得积分10
7秒前
astar927发布了新的文献求助10
8秒前
9秒前
EVEN完成签到 ,获得积分10
9秒前
心灵美的元枫完成签到,获得积分10
9秒前
9秒前
10秒前
l2385865294发布了新的文献求助10
11秒前
zzz发布了新的文献求助10
11秒前
刘泗青应助六步郎采纳,获得10
12秒前
sora98完成签到 ,获得积分10
13秒前
13秒前
14秒前
隋中旭完成签到 ,获得积分10
15秒前
15秒前
paperx完成签到,获得积分10
18秒前
19秒前
maizhan完成签到,获得积分10
19秒前
l2385865294完成签到,获得积分10
19秒前
asiya完成签到,获得积分10
19秒前
21秒前
yar给Mh的求助进行了留言
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213094
求助须知:如何正确求助?哪些是违规求助? 4389011
关于积分的说明 13665698
捐赠科研通 4249994
什么是DOI,文献DOI怎么找? 2331851
邀请新用户注册赠送积分活动 1329542
关于科研通互助平台的介绍 1283086