SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG

睡眠阶段 背景(考古学) 计算机科学 睡眠(系统调用) 脑电图 人工智能 期限(时间) 机器学习 语音识别 多导睡眠图 心理学 神经科学 古生物学 生物 操作系统 物理 量子力学
作者
Caihong Zhao,Jinbao Li,Yahong Guo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106806-106806 被引量:22
标识
DOI:10.1016/j.cmpb.2022.106806
摘要

Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
十三发布了新的文献求助10
2秒前
贤惠的松发布了新的文献求助10
3秒前
HuiyunXiao发布了新的文献求助10
3秒前
现代青枫应助感动的红酒采纳,获得10
4秒前
神奇海螺完成签到,获得积分10
4秒前
xjmmcome完成签到,获得积分10
4秒前
SaSa发布了新的文献求助10
4秒前
小何完成签到,获得积分10
5秒前
5秒前
赫连立果完成签到 ,获得积分10
6秒前
slokni完成签到,获得积分10
6秒前
大白沙子应助choys采纳,获得10
6秒前
莫莫完成签到 ,获得积分10
6秒前
顺顺黎黎完成签到,获得积分10
6秒前
Dong完成签到,获得积分10
7秒前
款解耦完成签到 ,获得积分10
7秒前
xjmmcome发布了新的文献求助30
7秒前
恋晴完成签到 ,获得积分10
8秒前
小杨完成签到 ,获得积分10
9秒前
萊以托尔福完成签到,获得积分10
9秒前
李爱国应助lll采纳,获得10
10秒前
Dayton完成签到,获得积分10
11秒前
耶律遗风发布了新的文献求助10
11秒前
朴实山兰完成签到,获得积分10
11秒前
charles发布了新的文献求助10
13秒前
浅色西完成签到,获得积分10
14秒前
慕青应助满意的皮带采纳,获得10
15秒前
15秒前
十三完成签到,获得积分10
16秒前
17秒前
ODD给ODD的求助进行了留言
17秒前
17秒前
鲜于夜白完成签到,获得积分10
21秒前
kim发布了新的文献求助10
22秒前
熊大完成签到,获得积分10
24秒前
善学以致用应助路鹿鹿采纳,获得10
26秒前
Raymond完成签到,获得积分0
28秒前
聪明的熠彤关注了科研通微信公众号
29秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830980
关于积分的说明 7982408
捐赠科研通 2492814
什么是DOI,文献DOI怎么找? 1329855
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954