SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG

睡眠阶段 背景(考古学) 计算机科学 睡眠(系统调用) 脑电图 人工智能 慢波睡眠 语音识别 多导睡眠图 心理学 神经科学 生物 操作系统 古生物学
作者
Caihong Zhao,Jinbao Li,Yahong Guo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106806-106806 被引量:54
标识
DOI:10.1016/j.cmpb.2022.106806
摘要

Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助hx采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
汪丽娜完成签到,获得积分20
1秒前
1秒前
陈俊霖完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
2秒前
稳重傲柔发布了新的文献求助10
2秒前
3秒前
lande完成签到,获得积分20
3秒前
3秒前
3秒前
李涛完成签到,获得积分10
3秒前
小巧的傲松完成签到,获得积分10
3秒前
4秒前
汉堡包应助沙漠水手采纳,获得10
4秒前
4秒前
搜集达人应助于凌娇采纳,获得10
6秒前
啦啦啦123发布了新的文献求助10
6秒前
不将道理发布了新的文献求助10
6秒前
lande发布了新的文献求助10
6秒前
汪丽娜发布了新的文献求助20
7秒前
7秒前
CipherSage应助123采纳,获得10
7秒前
恒星完成签到,获得积分10
7秒前
徐明宏发布了新的文献求助10
8秒前
无风风发布了新的文献求助10
8秒前
完美世界应助xiaoW采纳,获得10
8秒前
Felix发布了新的文献求助10
8秒前
9秒前
mmzz发布了新的文献求助10
10秒前
付和旭完成签到,获得积分10
10秒前
积极雁完成签到,获得积分10
10秒前
yy发布了新的文献求助10
11秒前
lulu完成签到,获得积分10
11秒前
12秒前
Akim应助一一采纳,获得10
12秒前
Renhc完成签到,获得积分10
13秒前
魔幻的哈密瓜完成签到,获得积分10
13秒前
王一发布了新的文献求助10
14秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170