SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG

睡眠阶段 背景(考古学) 计算机科学 睡眠(系统调用) 脑电图 人工智能 慢波睡眠 语音识别 多导睡眠图 心理学 神经科学 古生物学 生物 操作系统
作者
Caihong Zhao,Jinbao Li,Yahong Guo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106806-106806 被引量:54
标识
DOI:10.1016/j.cmpb.2022.106806
摘要

Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助丸子采纳,获得10
1秒前
Bin_Liu发布了新的文献求助10
1秒前
是小刘同学呀完成签到,获得积分10
2秒前
2秒前
wang完成签到,获得积分10
2秒前
2秒前
LTM215发布了新的文献求助10
3秒前
东莞市东莞市完成签到,获得积分10
3秒前
简单芙蓉发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
4秒前
xiaobai完成签到,获得积分10
4秒前
迷你的灵阳完成签到 ,获得积分20
6秒前
hebrews完成签到,获得积分10
7秒前
BAI_1发布了新的文献求助30
7秒前
7秒前
开心的寄灵完成签到 ,获得积分10
8秒前
穆立果完成签到,获得积分10
9秒前
VVTTWW完成签到 ,获得积分10
9秒前
yhbk完成签到,获得积分10
9秒前
11秒前
xxjbuaa给lyt的求助进行了留言
11秒前
浮游应助Boston采纳,获得10
11秒前
爆米花应助yuyuyuyuyuyuyu采纳,获得10
12秒前
传奇3应助朴实的秋采纳,获得10
12秒前
MIku发布了新的文献求助10
12秒前
赵一发布了新的文献求助10
13秒前
高源伯完成签到 ,获得积分10
14秒前
高手中的糕手完成签到,获得积分10
14秒前
科研通AI6应助冰糖糖橘采纳,获得10
15秒前
JWKim完成签到,获得积分10
15秒前
谦让土豆发布了新的文献求助10
16秒前
MXH完成签到 ,获得积分10
16秒前
16秒前
小灰灰完成签到,获得积分10
17秒前
17秒前
RyanNeo完成签到,获得积分10
18秒前
LZJ完成签到,获得积分10
19秒前
田様应助张子捷采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
田様应助时空路人采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419006
求助须知:如何正确求助?哪些是违规求助? 4534530
关于积分的说明 14144769
捐赠科研通 4450860
什么是DOI,文献DOI怎么找? 2441467
邀请新用户注册赠送积分活动 1433103
关于科研通互助平台的介绍 1410503