SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG

睡眠阶段 背景(考古学) 计算机科学 睡眠(系统调用) 脑电图 人工智能 慢波睡眠 语音识别 多导睡眠图 心理学 神经科学 古生物学 生物 操作系统
作者
Caihong Zhao,Jinbao Li,Yahong Guo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:220: 106806-106806 被引量:38
标识
DOI:10.1016/j.cmpb.2022.106806
摘要

Single-channel EEG is the most popular choice of sensing modality in sleep staging studies, because it widely conforms to the sleep staging guidelines. The current deep learning method using single-channel EEG signals for sleep staging mainly extracts the features of its surrounding epochs to obtain the short-term temporal context information of EEG epochs, and ignore the influence of the long-term temporal context information on sleep staging. However, the long-term context information includes sleep stage transition rules in a sleep cycle, which can further improve the performance of sleep staging. The aim of this research is to develop a temporal context network to capture the long-term context between EEG sleep stages.In this paper, we design a sleep staging network named SleepContextNet for sleep stage sequence. SleepContextNet can extract and utilize the long-term temporal context between consecutive EEG epochs, and combine it with the short-term context. we utilize Convolutional Neural Network(CNN) layers for learning representative features from each sleep stage and the representation features sequence learned are fed into a Recurrent Neural Network(RNN) layer for learning long-term and short-term context information among sleep stage in chronological order. In addition, we design a data augmentation algorithm for EEG to retain the long-term context information without changing the number of samples.We evaluate the performance of our proposed network using four public datasets, the 2013 version of Sleep-EDF (SEDF), the 2018 version of Sleep-EDF Expanded (SEDFX), Sleep Heart Health Study (SHHS) and the CAP Sleep Database. The experimental results demonstrate that SleepContextNet outperforms state-of-the-art techniques in terms of different evaluation metrics by capturing long-term and short-term temporal context information. On average, accuracy of 84.8% in SEDF, 82.7% in SEDFX, 86.4% in SHHS and 78.8% in CAP are obtained under subject-independent cross validation.The network extracts the long-term and short-term temporal context information of sleep stages from the sequence features, which utilizes the temporal dependencies among the EEG epochs effectively and improves the accuracy of sleep stages. The sleep staging method based on forward temporal context information is suitable for real-time family sleep monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钙片儿发布了新的文献求助10
刚刚
1秒前
大眼睛的草莓完成签到,获得积分10
1秒前
文卿完成签到,获得积分10
1秒前
1秒前
酷酷李可爱婕完成签到 ,获得积分10
2秒前
乐乐应助张阳采纳,获得10
3秒前
3秒前
3秒前
领导范儿应助珂小小采纳,获得10
3秒前
666完成签到,获得积分10
3秒前
假装有昵称完成签到,获得积分10
3秒前
3秒前
zyy完成签到,获得积分10
4秒前
LinglongCai完成签到 ,获得积分10
5秒前
wdy111应助jjjjchou采纳,获得20
5秒前
胡博云完成签到,获得积分10
5秒前
11完成签到,获得积分10
6秒前
SL完成签到,获得积分10
6秒前
慕青应助笑点低的不采纳,获得10
6秒前
铜W完成签到,获得积分20
6秒前
6秒前
林夏发布了新的文献求助10
7秒前
凉凉盛夏完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
八百标兵奔北坡完成签到,获得积分10
7秒前
上官若男应助靓丽的发箍采纳,获得10
7秒前
7秒前
8秒前
微笑的桐完成签到 ,获得积分20
8秒前
丘比特应助树上种树采纳,获得10
8秒前
H28G发布了新的文献求助10
9秒前
儒雅致远发布了新的文献求助10
9秒前
ding应助六六安安采纳,获得10
10秒前
10秒前
铜W发布了新的文献求助10
10秒前
nron发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582