超原子
离域电子
化学
价电子
星团(航天器)
硫系化合物
原子物理学
电子
电子结构
电子组态
原子轨道
价(化学)
磁矩
自旋态
凝聚态物理
分子物理学
物理
计算化学
离子
量子力学
有机化学
计算机科学
程序设计语言
作者
Dinesh Bista,Alexander P. Aydt,Kevin J. Anderton,Daniel W. Paley⧓,Theodore A. Betley,Arthur C. Reber,Vikas Chauhan,Amymarie K. Bartholomew,Xavier Roy,Shiv N. Khanna
摘要
Quantum confinement in small symmetric clusters leads to the bunching of electronic states into closely packed shells, enabling the classification of clusters with well-defined valences as superatoms. Like atoms, superatomic clusters with filled shells exhibit enhanced electronic stability. Here, we show that octahedral transition-metal chalcogenide clusters can achieve filled shell electronic configurations when they have 100 valence electrons in 50 orbitals or 114 valence electrons in 57 orbitals. While these stable clusters are intrinsically diamagnetic, we use our understanding of their electronic structures to theoretically predict that a cluster with 107 valence electrons would uniquely combine high stability and high-spin magnetic moment, attained by filling a majority subshell of 57 electrons and a minority subshell of 50 electrons. We experimentally demonstrate this predicted stability, high-spin magnetic moment (S = 7/2), and fully delocalized electronic structure in a new cluster, [NEt4]5[Fe6S8(CN)6]. This work presents the first computational and experimental demonstration of the importance of dual subshell filling in transition-metal chalcogenide clusters.
科研通智能强力驱动
Strongly Powered by AbleSci AI