Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network

外推法 计算机科学 图形 相关性 时态数据库 注意力网络 模式识别(心理学) 生物系统 人工智能 数据挖掘 数学 理论计算机科学 统计 几何学 生物
作者
Lei Cheng,Li Li,Sai Li,Shaolin Ran,Ze Zhang,Yong Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 116944-116944 被引量:29
标识
DOI:10.1016/j.eswa.2022.116944
摘要

Accurate prediction of gas concentration is of great importance in many safe-based systems and applications. However, prediction accuracy of gas concentration is limited by not only the temporal evolution of gas concentration but also the spatial characteristics of gas dispersion. To capture the spatial and temporal dependences simultaneously, an evolutionary attention-based temporal graph convolutional network (EAT-GCN) is proposed, which has three outstanding features: (1) graph convolutional network (GCN) is used to capture spatial dependence by learning topological structures of a gas sensor network; (2) gated recurrent unit (GRU) is adopted to retain temporal dependence by learning dynamic changes of gas concentration, and (3) evolutionary attention is introduced to improve the ability of GRU to pay different degrees of attention to the sub-window features within multiple time steps. Finally, kernel extrapolation distribution mapping algorithm is employed to visualize the predicted results of gas concentration and update the gas distribution map. Compared with CNN, GCN, GRU, T-GCN, A3T-GCN and EA-GRU models, the proposed EAT-GCN model improves the prediction accuracy by 13.46%, 124.21%, 33.92%, 23.39%, 46.63%, and 23.97%, respectively. Experiments demonstrate that the designed model captures spatiotemporal correlation from gas concentration data and achieves better prediction accuracy than state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卤笋发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
3秒前
顾矜应助拽住小时候采纳,获得10
3秒前
想个名字发布了新的文献求助30
3秒前
NexusExplorer应助KYT采纳,获得10
4秒前
Eureka完成签到,获得积分10
5秒前
科研通AI2S应助潘半青采纳,获得10
5秒前
8秒前
11秒前
子夜007发布了新的文献求助30
11秒前
过期牛奶坏肚子完成签到,获得积分10
11秒前
12秒前
12秒前
月下完成签到,获得积分10
14秒前
晶晶妹妹发布了新的文献求助10
15秒前
16秒前
16秒前
sal完成签到 ,获得积分20
17秒前
芝华士完成签到 ,获得积分10
17秒前
尾状叶完成签到,获得积分10
17秒前
李lll发布了新的文献求助10
18秒前
宜醉宜游宜睡应助三金采纳,获得10
19秒前
bjyx发布了新的文献求助10
19秒前
OAO发布了新的文献求助10
19秒前
20秒前
20秒前
李健应助日拱一卒采纳,获得10
20秒前
Hello应助heisa采纳,获得10
21秒前
吴青应助卤笋采纳,获得10
24秒前
卡皮巴拉发布了新的文献求助10
25秒前
26秒前
丘比特应助李lll采纳,获得10
27秒前
28秒前
28秒前
30秒前
Return应助三金采纳,获得10
31秒前
FY发布了新的文献求助10
31秒前
31秒前
小太阳发布了新的文献求助10
33秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644