Skin senescence: mechanisms and impact on whole-body aging

皮肤老化 衰老 表型 生物 细胞衰老 细胞生物学 医学 皮肤病科 遗传学 基因
作者
Ana Catarina Franco,Célia A. Aveleira,Cláudia Cavadas
出处
期刊:Trends in Molecular Medicine [Elsevier BV]
卷期号:28 (2): 97-109 被引量:238
标识
DOI:10.1016/j.molmed.2021.12.003
摘要

With age, senescent cells accumulate in the skin and spread the aging phenotype to neighboring cells, resulting in decreased thickness, regenerative capacity, and a barrier effect in the skin. Aging and cellular senescence phenotypes in the skin were found to correlate with immunosenescence, longevity, or cardiovascular disease risk. Skin aging, induced by ultraviolet radiation, has an impact in the brain, by decreasing hippocampal neurogenesis and activating the central hypothalamic–pituitary–adrenal axis. Senolytics, such as dasatinib and fisetin, are drugs that selectively eliminate senescent cells and are already topically administered to the skin, showing potential antiaging effects. The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype. The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype. small lipid bilayer structures, deliberately secreted by cells into the extracellular space, that can enclose nucleic acids, proteins, or lipids. EVs can be taken up by recipient cells, with various effects on that target cell. type of skin aging caused by exposure to hazardous environmental factors and lifestyle. a neuroendocrine unit comprising the hypothalamus, pituitary gland, and adrenal glands, which, by integrating physiological and endocrine signals, has a central role in body homeostasis and response to stress. progressive dysfunction and decline in immune function, generally associated with aging or age-related diseases. state of chronic low-grade inflammation associated with progressive age. type of genetically programmed aging, caused by the natural passage of time; also known as chronological aging. process of the generation of new neurons in the brain through differentiation from stem cells. cellular senescence caused by the secretome of primary senescent cells. type of extrinsic skin aging caused by exposure to UVR from sunlight. entire set of proteins secreted by a given cell. set of proinflammatory, proangiogenic, and growth stimulatory molecular agents secreted by senescent cells, which influences the microenvironment and surrounding cells. class of drugs that selectively eliminate senescent cells, therefore targeting the deleterious effects of senescent cells within tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮发布了新的文献求助10
刚刚
内向的涵菡完成签到,获得积分10
刚刚
honey完成签到,获得积分10
刚刚
清酒发布了新的文献求助10
刚刚
29完成签到,获得积分10
1秒前
兜兜发布了新的文献求助10
1秒前
1秒前
长尾巴的人类完成签到,获得积分10
1秒前
李健的小迷弟应助燕子采纳,获得10
1秒前
番茄土豆发布了新的文献求助50
2秒前
2秒前
浮想圆影发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
4秒前
大个应助暴躁的问兰采纳,获得10
4秒前
77完成签到,获得积分10
4秒前
小王同学完成签到,获得积分10
4秒前
4秒前
Mira发布了新的文献求助10
4秒前
爆米花应助废柴采纳,获得10
5秒前
5秒前
suibian发布了新的文献求助10
5秒前
pxd应助annaanna采纳,获得10
5秒前
5秒前
浮游应助2633148059采纳,获得10
6秒前
禾苗完成签到,获得积分10
6秒前
星辰大海应助内向的涵菡采纳,获得10
6秒前
四夕完成签到 ,获得积分10
6秒前
6秒前
6秒前
wbero完成签到,获得积分10
7秒前
乐乐应助Atoxus采纳,获得10
7秒前
情怀应助Amai采纳,获得10
7秒前
8秒前
MCX发布了新的文献求助10
8秒前
9秒前
JamesPei应助77采纳,获得10
9秒前
杜文博发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921