Skin senescence: mechanisms and impact on whole-body aging

皮肤老化 衰老 表型 生物 细胞衰老 细胞生物学 医学 皮肤病科 遗传学 基因
作者
Ana Catarina Franco,Célia A. Aveleira,Cláudia Cavadas
出处
期刊:Trends in Molecular Medicine [Elsevier BV]
卷期号:28 (2): 97-109 被引量:177
标识
DOI:10.1016/j.molmed.2021.12.003
摘要

With age, senescent cells accumulate in the skin and spread the aging phenotype to neighboring cells, resulting in decreased thickness, regenerative capacity, and a barrier effect in the skin. Aging and cellular senescence phenotypes in the skin were found to correlate with immunosenescence, longevity, or cardiovascular disease risk. Skin aging, induced by ultraviolet radiation, has an impact in the brain, by decreasing hippocampal neurogenesis and activating the central hypothalamic–pituitary–adrenal axis. Senolytics, such as dasatinib and fisetin, are drugs that selectively eliminate senescent cells and are already topically administered to the skin, showing potential antiaging effects. The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype. The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype. small lipid bilayer structures, deliberately secreted by cells into the extracellular space, that can enclose nucleic acids, proteins, or lipids. EVs can be taken up by recipient cells, with various effects on that target cell. type of skin aging caused by exposure to hazardous environmental factors and lifestyle. a neuroendocrine unit comprising the hypothalamus, pituitary gland, and adrenal glands, which, by integrating physiological and endocrine signals, has a central role in body homeostasis and response to stress. progressive dysfunction and decline in immune function, generally associated with aging or age-related diseases. state of chronic low-grade inflammation associated with progressive age. type of genetically programmed aging, caused by the natural passage of time; also known as chronological aging. process of the generation of new neurons in the brain through differentiation from stem cells. cellular senescence caused by the secretome of primary senescent cells. type of extrinsic skin aging caused by exposure to UVR from sunlight. entire set of proteins secreted by a given cell. set of proinflammatory, proangiogenic, and growth stimulatory molecular agents secreted by senescent cells, which influences the microenvironment and surrounding cells. class of drugs that selectively eliminate senescent cells, therefore targeting the deleterious effects of senescent cells within tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
CyberHamster完成签到,获得积分10
10秒前
xiaohong完成签到,获得积分10
13秒前
朱比特完成签到,获得积分10
14秒前
15秒前
zmuzhang2019发布了新的文献求助10
21秒前
onestepcloser完成签到 ,获得积分0
21秒前
zoe完成签到 ,获得积分10
22秒前
发嗲的慕蕊完成签到 ,获得积分10
23秒前
Linson完成签到,获得积分10
24秒前
顾矜应助赵三岁采纳,获得10
38秒前
yyy2025完成签到,获得积分10
42秒前
木雨亦潇潇完成签到,获得积分10
49秒前
香蕉觅云应助nine2652采纳,获得10
51秒前
量子星尘发布了新的文献求助10
55秒前
芳华如梦完成签到 ,获得积分10
57秒前
57秒前
58秒前
58秒前
土豆丝完成签到 ,获得积分10
58秒前
琦琦完成签到,获得积分10
1分钟前
zzzz完成签到,获得积分20
1分钟前
GEZIKU完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
赵三岁发布了新的文献求助10
1分钟前
wwb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
肯德基没有黄焖鸡完成签到 ,获得积分10
1分钟前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
老张完成签到,获得积分10
2分钟前
2分钟前
zhugao完成签到,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022