Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression

地理加权回归模型 多级模型 计算机科学 房地产 空间异质性 线性回归 数据挖掘 计量经济学 统计 数学 机器学习 政治学 生态学 生物 法学
作者
Yigong Hu,Binbin Lu,Yong Ge,Guanpeng Dong
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE Publishing]
卷期号:49 (6): 1715-1740 被引量:7
标识
DOI:10.1177/23998083211063885
摘要

Spatial heterogeneity is important for exploring data relationships between real estate price and its influential factors. The geographically weighted regression (GWR) technique has been frequently adopted for this purpose. In this study, we collected a second-hand real estate house price data set of Wuhan, in which each property is located the same as the community it belongs to. Thus, this data set possesses a typical characteristic, that is, dozens or even hundreds of observations could be allocated to one pair of coordinates, but vary in their attributes. This specific feature might lead to serious problems with bandwidth optimisations and coefficient estimates for calibrating the GWR model. We then proposed an extension by combining the hierarchical linear model (HLM) and GWR, namely HLM-GWR to cope with these problems. Results show that the HLM-GWR performs much better than the conventional GWR and HLM technique in terms of bandwidth optimisation, coefficient estimates. With a controlled simulation test, we again validated the advantage of the HLM-GWR model in comparison to both the HLM and GWR in handling this specific scenario. Overall, HLM-GWR is workable and should be recommended in this case or other scenarios with observations of similar spatial distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖醋可乐发布了新的文献求助10
刚刚
mtonga完成签到,获得积分10
刚刚
天天快乐应助小唐采纳,获得10
刚刚
WN发布了新的文献求助10
1秒前
warren发布了新的文献求助10
1秒前
JamesPei应助fangtong采纳,获得10
1秒前
1秒前
苏愚志完成签到,获得积分10
1秒前
回家吃饭完成签到,获得积分10
1秒前
月宸发布了新的文献求助10
2秒前
辽阳太子发布了新的文献求助10
2秒前
Echo完成签到 ,获得积分10
2秒前
Orange应助王欣瑶采纳,获得10
3秒前
CipherSage应助tty615采纳,获得10
3秒前
浮游应助xh采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
鱼七完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
睡觉的猫完成签到,获得积分10
8秒前
Queenie完成签到 ,获得积分10
8秒前
8秒前
Mengwei完成签到 ,获得积分10
8秒前
汉堡包应助轻松凡英采纳,获得10
8秒前
浮游应助Costing采纳,获得10
9秒前
9秒前
科研通AI5应助123采纳,获得30
9秒前
阳光羽毛发布了新的文献求助10
9秒前
cf完成签到,获得积分20
10秒前
10秒前
Lucas应助睡醒的尾椎骨采纳,获得80
11秒前
深情安青应助Kate采纳,获得10
11秒前
11秒前
阳光傲旋完成签到,获得积分10
11秒前
carrot发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942107
求助须知:如何正确求助?哪些是违规求助? 4207873
关于积分的说明 13079673
捐赠科研通 3986881
什么是DOI,文献DOI怎么找? 2182779
邀请新用户注册赠送积分活动 1198476
关于科研通互助平台的介绍 1110773