A state of health estimation method for electric vehicle Li-ion batteries using GA-PSO-SVR

粒子群优化 均方误差 平均绝对百分比误差 支持向量机 遗传算法 健康状况 电池(电) 荷电状态 计算机科学 算法 统计 数学 人工智能 机器学习 功率(物理) 物理 量子力学
作者
Yue Zhi,Heqi Wang,Liang Wang
出处
期刊:Complex & Intelligent Systems 卷期号:8 (3): 2167-2182 被引量:27
标识
DOI:10.1007/s40747-021-00639-9
摘要

Abstract State of health (SOH) is the ratio of the currently available maximum capacity of the battery to the rated capacity. It is an important index to describe the degradation state of a pure electric vehicle battery and has an important reference value in evaluating the health level of the retired battery and estimating the driving range. In this study, the random forest algorithm is first used to find the most important health factors to lithium-ion batteries based on the dataset released by National Aeronautics and Space Administration (NASA). Then the support vector regression (SVR) algorithm is developed to predict the SOH of a lithium-ion battery. The genetic algorithm-particle swarm optimization (GA-PSO) algorithm is brought forward to optimize the parameter values of the SVR, which could improve the estimation accuracy and convergence speed. The proposed SOH estimation method is applied to four batteries and gets a root mean square error (RMSE) of 0.40% and an average absolute percentage error (MAPE) of 0.56%. In addition, the method is also compared with genetic algorithm-support vector regression (GA-SVR) and particle swarm optimization-support vector regression (PSO-SVR), respectively. The results show that (i) compared with the PSO-SVR method, the proposed method can decrease the average RMSE by 0.10%, and the average MAPE by 0.17%; (ii) compared with the GA-PSO method, number of iterations under the proposed method can be reduced by 7 generations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
GE应助科研通管家采纳,获得10
1秒前
zxzxzx应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
简单又菱发布了新的文献求助10
4秒前
蓝天发布了新的文献求助10
7秒前
住在魔仙堡的鱼完成签到 ,获得积分10
8秒前
要减肥又槐完成签到 ,获得积分10
9秒前
LM完成签到,获得积分10
10秒前
10秒前
mosisa完成签到,获得积分10
12秒前
白凌风完成签到 ,获得积分10
12秒前
12秒前
Jasper应助简单又菱采纳,获得10
13秒前
15秒前
整齐的不评完成签到,获得积分10
15秒前
swimming完成签到 ,获得积分10
15秒前
ayan发布了新的文献求助10
16秒前
zz发布了新的文献求助10
16秒前
害怕的冰颜完成签到 ,获得积分10
17秒前
舒心代柔完成签到,获得积分10
19秒前
传奇3应助柠檬脾气可爱采纳,获得10
19秒前
陈文海完成签到,获得积分10
23秒前
25秒前
arnoan发布了新的文献求助10
30秒前
桐桐应助zz采纳,获得10
32秒前
ZHANG发布了新的文献求助10
33秒前
ghfgjjf完成签到 ,获得积分10
39秒前
拼搏映菡完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989