Robust Deep 3D Blood Vessel Segmentation Using Structural Priors

人工智能 稳健性(进化) 计算机科学 基本事实 分割 推论 编码器 模式识别(心理学) 图像分割 计算机视觉 深度学习 生物化学 基因 操作系统 化学
作者
Xuelu Li,Raja Bala,Vishal Monga
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1271-1284 被引量:9
标识
DOI:10.1109/tip.2021.3139241
摘要

Deep learning has enabled significant improvements in the accuracy of 3D blood vessel segmentation. Open challenges remain in scenarios where labeled 3D segmentation maps for training are severely limited, as is often the case in practice, and in ensuring robustness to noise. Inspired by the observation that 3D vessel structures project onto 2D image slices with informative and unique edge profiles, we propose a novel deep 3D vessel segmentation network guided by edge profiles. Our network architecture comprises a shared encoder and two decoders that learn segmentation maps and edge profiles jointly. 3D context is mined in both the segmentation and edge prediction branches by employing bidirectional convolutional long-short term memory (BCLSTM) modules. 3D features from the two branches are concatenated to facilitate learning of the segmentation map. As a key contribution, we introduce new regularization terms that: a) capture the local homogeneity of 3D blood vessel volumes in the presence of biomarkers; and b) ensure performance robustness to domain-specific noise by suppressing false positive responses. Experiments on benchmark datasets with ground truth labels reveal that the proposed approach outperforms state-of-the-art techniques on standard measures such as DICE overlap and mean Intersection-over-Union. The performance gains of our method are even more pronounced when training is limited. Furthermore, the computational cost of our network inference is among the lowest compared with state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxyinhefeng完成签到 ,获得积分10
1秒前
千逐完成签到,获得积分10
1秒前
sanjin完成签到,获得积分10
1秒前
康康发布了新的文献求助10
1秒前
萧七七完成签到,获得积分10
2秒前
2秒前
天天快乐应助然@采纳,获得10
2秒前
李健应助SilenceDirect采纳,获得10
3秒前
3秒前
4秒前
yidashi完成签到,获得积分10
4秒前
lu发布了新的文献求助10
4秒前
6秒前
7秒前
DM完成签到,获得积分20
8秒前
勤恳青曼发布了新的文献求助10
9秒前
上官若男应助老仙翁采纳,获得30
9秒前
gaomeizhen完成签到,获得积分10
10秒前
科目三应助安静海露采纳,获得10
10秒前
危险份子完成签到,获得积分10
11秒前
11秒前
大胆的静竹完成签到,获得积分10
11秒前
芝麻球ii发布了新的文献求助10
12秒前
寻风完成签到,获得积分10
13秒前
清森发布了新的文献求助10
13秒前
黄74185296完成签到,获得积分10
13秒前
SHuEvan完成签到,获得积分10
14秒前
LAI发布了新的文献求助10
15秒前
渣渣凡完成签到,获得积分10
15秒前
DM发布了新的文献求助10
15秒前
15秒前
奕奕完成签到,获得积分10
15秒前
赘婿应助bluechen800205采纳,获得10
16秒前
16秒前
斯文败类应助CC采纳,获得10
16秒前
兰兰完成签到,获得积分10
16秒前
朴实草莓完成签到,获得积分10
17秒前
彤彤完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257649
求助须知:如何正确求助?哪些是违规求助? 2899532
关于积分的说明 8306493
捐赠科研通 2568733
什么是DOI,文献DOI怎么找? 1395309
科研通“疑难数据库(出版商)”最低求助积分说明 652995
邀请新用户注册赠送积分活动 630835