Robust Deep 3D Blood Vessel Segmentation Using Structural Priors

人工智能 稳健性(进化) 计算机科学 基本事实 分割 推论 编码器 模式识别(心理学) 图像分割 计算机视觉 深度学习 生物化学 基因 操作系统 化学
作者
Xuelu Li,Raja Bala,Vishal Monga
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1271-1284 被引量:9
标识
DOI:10.1109/tip.2021.3139241
摘要

Deep learning has enabled significant improvements in the accuracy of 3D blood vessel segmentation. Open challenges remain in scenarios where labeled 3D segmentation maps for training are severely limited, as is often the case in practice, and in ensuring robustness to noise. Inspired by the observation that 3D vessel structures project onto 2D image slices with informative and unique edge profiles, we propose a novel deep 3D vessel segmentation network guided by edge profiles. Our network architecture comprises a shared encoder and two decoders that learn segmentation maps and edge profiles jointly. 3D context is mined in both the segmentation and edge prediction branches by employing bidirectional convolutional long-short term memory (BCLSTM) modules. 3D features from the two branches are concatenated to facilitate learning of the segmentation map. As a key contribution, we introduce new regularization terms that: a) capture the local homogeneity of 3D blood vessel volumes in the presence of biomarkers; and b) ensure performance robustness to domain-specific noise by suppressing false positive responses. Experiments on benchmark datasets with ground truth labels reveal that the proposed approach outperforms state-of-the-art techniques on standard measures such as DICE overlap and mean Intersection-over-Union. The performance gains of our method are even more pronounced when training is limited. Furthermore, the computational cost of our network inference is among the lowest compared with state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
格兰兔米兔完成签到,获得积分10
刚刚
刚刚
刚刚
Luna完成签到 ,获得积分10
1秒前
汪鸡毛发布了新的文献求助10
1秒前
积极寻梅发布了新的文献求助10
2秒前
2秒前
tu发布了新的文献求助30
3秒前
在水一方应助云_123采纳,获得10
3秒前
科研小民工应助晚安采纳,获得50
3秒前
木木完成签到,获得积分10
3秒前
4秒前
4秒前
晨安完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
爆米花应助特兰克斯采纳,获得10
6秒前
7秒前
8秒前
8秒前
9秒前
葛辉辉发布了新的文献求助10
9秒前
9秒前
共享精神应助baobaonaixi采纳,获得10
9秒前
半颗橙子发布了新的文献求助10
9秒前
10秒前
shimmery完成签到,获得积分10
11秒前
咔咔完成签到 ,获得积分20
11秒前
superworm1发布了新的文献求助10
11秒前
11秒前
hy发布了新的文献求助10
11秒前
舒心赛凤完成签到,获得积分10
11秒前
菠菜菜str完成签到,获得积分10
13秒前
悟空发布了新的文献求助10
13秒前
优雅山柏发布了新的文献求助10
13秒前
13秒前
junc发布了新的文献求助20
13秒前
memory发布了新的文献求助10
13秒前
罗曼长情雪兰完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762