Robust Deep 3D Blood Vessel Segmentation Using Structural Priors

人工智能 稳健性(进化) 计算机科学 基本事实 分割 推论 编码器 模式识别(心理学) 图像分割 计算机视觉 深度学习 生物化学 基因 操作系统 化学
作者
Xuelu Li,Raja Bala,Vishal Monga
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1271-1284 被引量:9
标识
DOI:10.1109/tip.2021.3139241
摘要

Deep learning has enabled significant improvements in the accuracy of 3D blood vessel segmentation. Open challenges remain in scenarios where labeled 3D segmentation maps for training are severely limited, as is often the case in practice, and in ensuring robustness to noise. Inspired by the observation that 3D vessel structures project onto 2D image slices with informative and unique edge profiles, we propose a novel deep 3D vessel segmentation network guided by edge profiles. Our network architecture comprises a shared encoder and two decoders that learn segmentation maps and edge profiles jointly. 3D context is mined in both the segmentation and edge prediction branches by employing bidirectional convolutional long-short term memory (BCLSTM) modules. 3D features from the two branches are concatenated to facilitate learning of the segmentation map. As a key contribution, we introduce new regularization terms that: a) capture the local homogeneity of 3D blood vessel volumes in the presence of biomarkers; and b) ensure performance robustness to domain-specific noise by suppressing false positive responses. Experiments on benchmark datasets with ground truth labels reveal that the proposed approach outperforms state-of-the-art techniques on standard measures such as DICE overlap and mean Intersection-over-Union. The performance gains of our method are even more pronounced when training is limited. Furthermore, the computational cost of our network inference is among the lowest compared with state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张萌洁发布了新的文献求助10
刚刚
1秒前
1秒前
松果完成签到,获得积分10
1秒前
1秒前
英俊水池完成签到,获得积分10
2秒前
2秒前
2秒前
一个爱吃爱睡的团子完成签到,获得积分10
2秒前
共享精神应助梅TiAmo采纳,获得10
2秒前
内向的台灯完成签到,获得积分10
3秒前
伍秋望完成签到,获得积分10
3秒前
4秒前
HM发布了新的文献求助10
5秒前
5秒前
美好幻灵发布了新的文献求助10
5秒前
5秒前
游舒平发布了新的文献求助10
5秒前
烊烊坨发布了新的文献求助10
5秒前
6秒前
Willow发布了新的文献求助10
7秒前
yznfly应助棋士采纳,获得30
7秒前
心灵美傲薇完成签到 ,获得积分10
7秒前
Xsxbb_zxCG发布了新的文献求助10
8秒前
无心的满天完成签到,获得积分10
8秒前
8秒前
WFLLL应助wen采纳,获得10
8秒前
zoiaii完成签到 ,获得积分10
8秒前
xiaowang完成签到,获得积分10
8秒前
八乙基环辛四烯完成签到,获得积分10
9秒前
9秒前
可一完成签到,获得积分10
10秒前
阿南发布了新的文献求助10
10秒前
genomed发布了新的文献求助10
10秒前
10秒前
xkhxh完成签到 ,获得积分10
10秒前
派大星完成签到,获得积分10
11秒前
jucy完成签到,获得积分10
12秒前
祝科研顺利完成签到,获得积分10
12秒前
weber完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118