支持向量机
超平面
局部放电
鉴定(生物学)
可靠性工程
功率(物理)
工程类
计算机科学
电力电缆
样品(材料)
结构工程
法律工程学
模式识别(心理学)
电气工程
材料科学
人工智能
数学
复合材料
电压
化学
植物
几何学
物理
图层(电子)
量子力学
色谱法
生物
作者
Chien‐Kuo Chang,Bharath Kumar Boyanapalli
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation
[Institute of Electrical and Electronics Engineers]
日期:2021-12-01
卷期号:28 (6): 2170-2177
被引量:6
标识
DOI:10.1109/tdei.2021.009783
摘要
This study presents a method for predicting the insulation status of power cable joints based on partial discharges (PDs). First, PD data are collected from aging experiments with 13 power cable joints involving artificial defects. Second, two PD features with a high identification of aging status are extracted from 104 PD features. Additionally, the initial and final stages of insulation aging are defined, and the labeled PD data are trained using a support vector machine (SVM). Finally, a method to detect insulation failure is proposed by estimating the minimum distance from the PD to the hyperplane of the SVM using nonlinear programming. The alert is defined as the turning of the curve in the final stage. The proposed method verifies that the warning and danger alerts are issued before insulation failure occurs for each sample.
科研通智能强力驱动
Strongly Powered by AbleSci AI