Diagnosis of Active Pulmonary Tuberculosis and Community Acquired Pneumonia Using Convolution Neural Network Based on Transfer Learning

试验装置 学习迁移 计算机科学 范畴变量 卷积神经网络 人工智能 规范化(社会学) 卷积(计算机科学) 分类器(UML) 模式识别(心理学) 集合(抽象数据类型) 人工神经网络 机器学习 人类学 社会学 程序设计语言
作者
Dong Han,Taiping He,Yong Yu,Youmin Guo,Yibing Chen,Haifeng Duan,Nan Yu
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (10): 1486-1492 被引量:10
标识
DOI:10.1016/j.acra.2021.12.025
摘要

A convolutional neural network (CNN) model for the diagnosis of active pulmonary tuberculosis (APTB) and community-acquired pneumonia (CAP) using chest radiographs (CRs) was constructed and verified based on transfer learning.CRs of 1247 APTB cases, 1488 CAP cases and 1247 normal cases were collected. All CRs were randomly divided into training set (1992 cases), validation set (1194 cases) and test set (796 cases) by stratified sampling in 5:3:2 radio. After normalization of CRs, the convolution base of pre-trained CNN (VGG16) model on ImageNet dataset was used to extract features, and the grid search was used to determine the optimal classifier module, which was added to the convolution base for transfer learning. After the training, the model with the highest accuracy of the validation set was selected as the optimal model to verify in the test set and calculate the accuracy of the model.The accuracy of validation set in the 63rd epochs was the highest, which was 0.9430, and the corresponding Categorical crossentropy was 0.1742. The accuracy of the training set was 0.9428, and the Categorical crossentropy was 0.1545. When the optimal model was applied to the test set, the accuracy was 0.9447, and the Categorical crossentropy was 0.1929.The transfer learning-based CNN model has good classification performance in the diagnosis of APTB, CAP and normal patients using CRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助jj采纳,获得10
2秒前
2秒前
2秒前
3秒前
橘子味的腿毛完成签到 ,获得积分20
4秒前
颜玉兰发布了新的文献求助10
5秒前
如意道消完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
今天不想学习完成签到,获得积分10
7秒前
丘比特应助甜美天磊采纳,获得10
7秒前
linxc07发布了新的文献求助10
7秒前
jj完成签到,获得积分10
8秒前
爆米花应助hhmm00采纳,获得10
8秒前
lvbowen发布了新的文献求助10
9秒前
wmuer完成签到 ,获得积分10
10秒前
11秒前
数学情缘发布了新的文献求助10
11秒前
锤子米发布了新的文献求助10
11秒前
希望天下0贩的0应助顺遂采纳,获得10
12秒前
13秒前
玖梦发布了新的文献求助10
15秒前
Ava应助小凉采纳,获得10
16秒前
16秒前
善学以致用应助可爱航采纳,获得80
17秒前
骆驼林子完成签到,获得积分10
17秒前
zzz应助时尚纸鹤采纳,获得10
18秒前
天天快乐应助玖梦采纳,获得10
20秒前
淡淡de橙子完成签到,获得积分10
20秒前
123完成签到,获得积分10
21秒前
21秒前
热心市民小红花应助Yan采纳,获得10
23秒前
24秒前
lvbowen完成签到,获得积分10
25秒前
26秒前
1122发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264175
求助须知:如何正确求助?哪些是违规求助? 2904362
关于积分的说明 8330033
捐赠科研通 2574592
什么是DOI,文献DOI怎么找? 1399202
科研通“疑难数据库(出版商)”最低求助积分说明 654449
邀请新用户注册赠送积分活动 633117