弹道
计算机科学
人工神经网络
深度学习
钥匙(锁)
北京
期限(时间)
人工智能
空中交通管理
生成语法
卷积(计算机科学)
生成对抗网络
机器学习
空中交通管制
工程类
中国
计算机安全
地理
物理
量子力学
天文
航空航天工程
考古
作者
Xiping Wu,Hongyu Yang,Chen Hu,Qinzhi Hu,Haoliang Hu
标识
DOI:10.1016/j.trc.2022.103554
摘要
Four-dimensional trajectory prediction is one of the key technologies of air traffic management (ATM) and plays a considerably significant role in enhancing air traffic safety, accelerating air traffic flow and improving ATM efficiency. In this work, we propose a novel long-term 4D trajectory prediction model based on generative adversarial network (GAN). First, trajectory data is preprocessed. Then, three deep generation models for trajectory prediction are designed based on one-dimensional convolution neural network (Conv1D-GAN), two-dimensional convolution neural network (Conv2D-GAN), and long short-term memory neural network (LSTM-GAN). Finally, the models are trained and tested using historical 4D trajectory data from Beijing to Chengdu, China. The results demonstrate that the Conv1D-GAN is the most suitable generative adversarial network for long-term aircraft trajectory prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI