Trajectory Planning and Optimization for Robotic Machining Based On Measured Point Cloud

弹道 计算机科学 机器人 刚度 工业机器人 夹紧 机械加工 工程类 机械工程 人工智能 控制理论(社会学) 结构工程 天文 物理 控制(管理)
作者
Gang Wang,Wenlong Li,Cheng Jiang,Dahu Zhu,Zhongwei Li,Wei Xu,Huan Zhao,Han Ding
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (3): 1621-1637 被引量:58
标识
DOI:10.1109/tro.2021.3108506
摘要

Industrial robots are characterized by good flexibility and a large working space, and offer a new approach for the machining of large and complex parts with small machining allowances (extra material allowed for subsequent machining). Parts of this type (such as aircraft skin parts, wind turbine blades, etc.) are easily deformed due to their large scale and low stiffness. Therefore, these parts cannot be directly machined according to the designed model. A feasible method is to plan a robotic machining path by using the point clouds of parts after clamping from onsite measurement which contains inherent defects of measurement such as noise points and abrupt points. In this article, a novel method is proposed to plan and optimize a robotic machining path that meets the requirements of smoothness, dexterity, and stiffness based on the point cloud from onsite measurement. The dual nonuniform rational B-spline curves of the machining path points and tool axis points are generated at first. Next, an objective function of smoothness optimization is established to filter out the local mutation of the path by considering the constraints of both the deformation energy and the deviation. Then, the objective function of robot postures optimization is established to optimize dexterity and Cartesian stiffness of a robot during the machining process. To show the feasibility of the proposed method, simulation and experiments are carried out. It is proved that the proposed method can generate a smooth machining trajectory. The stability of joint rotation and the rigidity and dexterity of the robot are improved during the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小能手完成签到 ,获得积分10
刚刚
来日可追应助Lian采纳,获得10
刚刚
1秒前
勤恳迎梦完成签到,获得积分10
1秒前
momeak发布了新的文献求助10
1秒前
1秒前
炙热雅琴发布了新的文献求助10
1秒前
2秒前
桐桐应助旺仔采纳,获得10
2秒前
张小鱼完成签到 ,获得积分10
3秒前
wangdashuai发布了新的文献求助10
4秒前
4秒前
4秒前
竹萧发布了新的文献求助10
5秒前
JamesPei应助胖虎采纳,获得10
6秒前
6秒前
CM发布了新的文献求助10
6秒前
Sophia完成签到,获得积分10
7秒前
aero完成签到 ,获得积分10
8秒前
田...发布了新的文献求助10
8秒前
annnnnnd发布了新的文献求助10
9秒前
9秒前
李健应助皮半鬼采纳,获得10
9秒前
精神四射完成签到,获得积分20
9秒前
春祭发布了新的文献求助10
9秒前
科研通AI5应助狄若枫采纳,获得10
10秒前
nehsiac完成签到,获得积分10
10秒前
刘忙完成签到,获得积分10
12秒前
13秒前
刻苦的元菱应助Elinor采纳,获得10
13秒前
七七完成签到 ,获得积分10
13秒前
慕青应助春祭采纳,获得10
14秒前
小巧的柠檬完成签到,获得积分10
15秒前
15秒前
科研通AI5应助苏苏采纳,获得10
15秒前
方方完成签到,获得积分10
16秒前
17秒前
CM完成签到,获得积分10
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3588902
求助须知:如何正确求助?哪些是违规求助? 3157433
关于积分的说明 9514805
捐赠科研通 2860164
什么是DOI,文献DOI怎么找? 1571708
邀请新用户注册赠送积分活动 737364
科研通“疑难数据库(出版商)”最低求助积分说明 722248